Resultado de la búsqueda
524 búsqueda de la palabra clave 'equations'



Título : Équations aux dérivées partielles elliptiques non linéaires Tipo de documento: documento electrónico Autores: Herve Le Dret ; SpringerLink (Online service) Editorial: Berlin, Heidelberg : Springer Berlin Heidelberg Fecha de publicación: 2013 Otro editor: Imprint: Springer Colección: Mathématiques et Applications, ISSN 1154-483X num. 72 Número de páginas: VIII, 225 p. 26 ill Il.: online resource ISBN/ISSN/DL: 978-3-642-36175-3 Idioma : Francés (fre) Palabras clave: Mathematics Partial differential equations Differential Equations Clasificación: 51 Matemáticas Resumen: Cet ouvrage est issu d’un cours de Master 2 enseigné à l’UPMC entre 2004 et 2007. Nous y présentons une sélection de techniques mathématiques orientées vers la résolution des équations aux dérivées partielles elliptiques semi-linéaires et quasi-linéaires. Après un vade-mecum d'analyse réelle et d'analyse fonctionnelle de base pour les EDP, sans démonstrations pour les points les plus connus, nous parcourons ainsi les théorèmes de point fixe classiques, les opérateurs de superposition dans les espaces de Lebesgue et de Sobolev, la méthode de Galerkin, les principes du maximum et la régularité elliptique, nous faisons une excursion assez longue dans divers aspects du calcul des variations puis terminons par les opérateurs monotones et pseudo-monotones. Tout ceci est agrémenté d’exemples et chaque chapitre est complété d'un nombre d’exercices qui croît essentiellement avec le numéro du chapitre, au fur et à mesure que de nouveaux matériaux sont présentés. This book stems from lectures notes of a Master 2 class held at UPMC between 2004 and 2007. A selection of mathematical techniques geared towards the resolution of semilinear and quasilinear elliptic partial differential equations is presented. After a short survival guide in basic real and functional analysis for PDEs, without proofs for the most well-known results, we walk through the classical fixed point theorems, the superposition operators in Lebesgue and Sobolev spaces, the Galerkin method, the maximum principles and elliptic regularity, we make a rather long foray into various aspects of the calculus of variations, and conclude with monotone and pseudo-monotone operators, by way of numerous examples. Each chapter is complemented by a number of exercises that grows with the chapter number as more and more material is made available. Nota de contenido: Préface -- Table des matières -- Rappels d’analyse réelle et fonctionnelle -- Théorèmes de point fixe et applications -- Les opérateurs de superposition -- La méthode de Galerkin -- Principe du maximum, régularité elliptique et applications -- Calcul des variations et problèmes quasi-linéaires -- Calcul des variations et points critiques -- Opérateurs monotones et inéquations variationnelles En línea: http://dx.doi.org/10.1007/978-3-642-36175-3 Link: https://biblioteca.cunef.edu/gestion/catalogo/index.php?lvl=notice_display&id=32570 Équations aux dérivées partielles elliptiques non linéaires [documento electrónico] / Herve Le Dret ; SpringerLink (Online service) . - Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2013 . - VIII, 225 p. 26 ill : online resource. - (Mathématiques et Applications, ISSN 1154-483X; 72) .
ISBN : 978-3-642-36175-3
Idioma : Francés (fre)
Palabras clave: Mathematics Partial differential equations Differential Equations Clasificación: 51 Matemáticas Resumen: Cet ouvrage est issu d’un cours de Master 2 enseigné à l’UPMC entre 2004 et 2007. Nous y présentons une sélection de techniques mathématiques orientées vers la résolution des équations aux dérivées partielles elliptiques semi-linéaires et quasi-linéaires. Après un vade-mecum d'analyse réelle et d'analyse fonctionnelle de base pour les EDP, sans démonstrations pour les points les plus connus, nous parcourons ainsi les théorèmes de point fixe classiques, les opérateurs de superposition dans les espaces de Lebesgue et de Sobolev, la méthode de Galerkin, les principes du maximum et la régularité elliptique, nous faisons une excursion assez longue dans divers aspects du calcul des variations puis terminons par les opérateurs monotones et pseudo-monotones. Tout ceci est agrémenté d’exemples et chaque chapitre est complété d'un nombre d’exercices qui croît essentiellement avec le numéro du chapitre, au fur et à mesure que de nouveaux matériaux sont présentés. This book stems from lectures notes of a Master 2 class held at UPMC between 2004 and 2007. A selection of mathematical techniques geared towards the resolution of semilinear and quasilinear elliptic partial differential equations is presented. After a short survival guide in basic real and functional analysis for PDEs, without proofs for the most well-known results, we walk through the classical fixed point theorems, the superposition operators in Lebesgue and Sobolev spaces, the Galerkin method, the maximum principles and elliptic regularity, we make a rather long foray into various aspects of the calculus of variations, and conclude with monotone and pseudo-monotone operators, by way of numerous examples. Each chapter is complemented by a number of exercises that grows with the chapter number as more and more material is made available. Nota de contenido: Préface -- Table des matières -- Rappels d’analyse réelle et fonctionnelle -- Théorèmes de point fixe et applications -- Les opérateurs de superposition -- La méthode de Galerkin -- Principe du maximum, régularité elliptique et applications -- Calcul des variations et problèmes quasi-linéaires -- Calcul des variations et points critiques -- Opérateurs monotones et inéquations variationnelles En línea: http://dx.doi.org/10.1007/978-3-642-36175-3 Link: https://biblioteca.cunef.edu/gestion/catalogo/index.php?lvl=notice_display&id=32570 Ejemplares
Signatura Medio Ubicación Sub-localización Sección Estado ningún ejemplar Selected Works of S.L. Sobolev / SpringerLink (Online service) ; Gennadii V. Demidenko ; Vladimir L. Vaskevich (2006)
![]()
Título : Selected Works of S.L. Sobolev : Volume I: Mathematical Physics, Computational Mathematics, and Cubature Formulas Tipo de documento: documento electrónico Autores: SpringerLink (Online service) ; Gennadii V. Demidenko ; Vladimir L. Vaskevich Editorial: Boston, MA : Springer US Fecha de publicación: 2006 Número de páginas: XXVIII, 604 p. 20 illus Il.: online resource ISBN/ISSN/DL: 978-0-387-34149-1 Idioma : Inglés (eng) Palabras clave: Mathematics Operator theory Partial differential equations Applied mathematics Engineering Numerical analysis Differential Equations Analysis Applications of Theory Clasificación: 51 Matemáticas Resumen: S.L. Sobolev (1908–1989) was a great mathematician of the twentieth century. His selected works included in this volume laid the foundations for intensive development of the modern theory of partial differential equations and equations of mathematical physics, and they were a gold mine for new directions of functional analysis and computational mathematics. The topics covered in this volume include Sobolev’s fundamental works on equations of mathematical physics, computational mathematics, and cubature formulas. Some of the articles are generally unknown to mathematicians because they were published in journals that are difficult to access. Audience This book is intended for mathematicians, especially those interested in mechanics and physics, and graduate and postgraduate students in mathematics and physics departments Nota de contenido: Equations of Mathematical Physics -- Application of the Theory of Plane Waves to the Lamb Problem -- On a New Method in the Plane Problem on Elastic Vibrations -- On Application of a New Method to Study Elastic Vibrations in a Space with Axial Symmetry -- On Vibrations of a Half-Plane and a Layer with Arbitrary Initial Conditions -- On a New Method of Solving Problems about Propagation of Vibrations -- Functionally Invariant Solutions of the Wave Equation -- General Theory of Diffraction of Waves on Riemann Surfaces -- The Problem of Propagation of a Plastic State -- On a New Problem of Mathematical Physics -- On Motion of a Symmetric Top with a Cavity Filled with Fluid -- On a Class of Problems of Mathematical Physics -- Computational Mathematics and Cubature Formulas -- Schwarz’s Algorithm in Elasticity Theory -- On Solution Uniqueness of Difference Equations of Elliptic Type -- On One Difference Equation -- Certain Comments on the Numeric Solutions of Integral Equations -- Certain Modern Questions of Computational Mathematics -- Functional Analysis and Computational Mathematics -- Formulas of Mechanical Cubatures in n-Dimensional Space -- On Interpolation of Functions of n Variables -- Various Types of Convergence of Cubature and Quadrature Formulas -- Cubature Formulas on the Sphere Invariant under Finite Groups of Rotations -- The Number of Nodes in Cubature Formulas on the Sphere -- Certain Questions of the Theory of Cubature Formulas -- A Method for Calculating the Coefficients in Mechanical Cubature Formulas -- On the Rate of Convergence of Cubature Formulas -- Theory of Cubature Formulas -- Convergence of Approximate Integration Formulas for Functions from L 2 (m) -- Evaluation of Integrals of Infinitely Differentiable Functions -- Cubature Formulas with Regular Boundary Layer -- A Difference Analogue of the Polyharmonic Equation -- Optimal Mechanical Cubature Formulas with Nodes on a Regular Lattice -- Constructing Cubature Formulas with Regular Boundary Layer -- Convergence of Cubature Formulas on Infinitely Differentiable Functions -- Convergence of Cubature Formulas on the Elements of -- The Coefficients of Optimal Quadrature Formulas -- On the Roots of Euler Polynomials -- On the End Roots of Euler Polynomials -- On the Asymptotics of the Roots of the Euler Polynomials -- More on the Zeros of Euler Polynomials -- On the Algebraic Order of Exactness of Formulas of Approximate Integration En línea: http://dx.doi.org/10.1007/978-0-387-34149-1 Link: https://biblioteca.cunef.edu/gestion/catalogo/index.php?lvl=notice_display&id=34808 Selected Works of S.L. Sobolev : Volume I: Mathematical Physics, Computational Mathematics, and Cubature Formulas [documento electrónico] / SpringerLink (Online service) ; Gennadii V. Demidenko ; Vladimir L. Vaskevich . - Boston, MA : Springer US, 2006 . - XXVIII, 604 p. 20 illus : online resource.
ISBN : 978-0-387-34149-1
Idioma : Inglés (eng)
Palabras clave: Mathematics Operator theory Partial differential equations Applied mathematics Engineering Numerical analysis Differential Equations Analysis Applications of Theory Clasificación: 51 Matemáticas Resumen: S.L. Sobolev (1908–1989) was a great mathematician of the twentieth century. His selected works included in this volume laid the foundations for intensive development of the modern theory of partial differential equations and equations of mathematical physics, and they were a gold mine for new directions of functional analysis and computational mathematics. The topics covered in this volume include Sobolev’s fundamental works on equations of mathematical physics, computational mathematics, and cubature formulas. Some of the articles are generally unknown to mathematicians because they were published in journals that are difficult to access. Audience This book is intended for mathematicians, especially those interested in mechanics and physics, and graduate and postgraduate students in mathematics and physics departments Nota de contenido: Equations of Mathematical Physics -- Application of the Theory of Plane Waves to the Lamb Problem -- On a New Method in the Plane Problem on Elastic Vibrations -- On Application of a New Method to Study Elastic Vibrations in a Space with Axial Symmetry -- On Vibrations of a Half-Plane and a Layer with Arbitrary Initial Conditions -- On a New Method of Solving Problems about Propagation of Vibrations -- Functionally Invariant Solutions of the Wave Equation -- General Theory of Diffraction of Waves on Riemann Surfaces -- The Problem of Propagation of a Plastic State -- On a New Problem of Mathematical Physics -- On Motion of a Symmetric Top with a Cavity Filled with Fluid -- On a Class of Problems of Mathematical Physics -- Computational Mathematics and Cubature Formulas -- Schwarz’s Algorithm in Elasticity Theory -- On Solution Uniqueness of Difference Equations of Elliptic Type -- On One Difference Equation -- Certain Comments on the Numeric Solutions of Integral Equations -- Certain Modern Questions of Computational Mathematics -- Functional Analysis and Computational Mathematics -- Formulas of Mechanical Cubatures in n-Dimensional Space -- On Interpolation of Functions of n Variables -- Various Types of Convergence of Cubature and Quadrature Formulas -- Cubature Formulas on the Sphere Invariant under Finite Groups of Rotations -- The Number of Nodes in Cubature Formulas on the Sphere -- Certain Questions of the Theory of Cubature Formulas -- A Method for Calculating the Coefficients in Mechanical Cubature Formulas -- On the Rate of Convergence of Cubature Formulas -- Theory of Cubature Formulas -- Convergence of Approximate Integration Formulas for Functions from L 2 (m) -- Evaluation of Integrals of Infinitely Differentiable Functions -- Cubature Formulas with Regular Boundary Layer -- A Difference Analogue of the Polyharmonic Equation -- Optimal Mechanical Cubature Formulas with Nodes on a Regular Lattice -- Constructing Cubature Formulas with Regular Boundary Layer -- Convergence of Cubature Formulas on Infinitely Differentiable Functions -- Convergence of Cubature Formulas on the Elements of -- The Coefficients of Optimal Quadrature Formulas -- On the Roots of Euler Polynomials -- On the End Roots of Euler Polynomials -- On the Asymptotics of the Roots of the Euler Polynomials -- More on the Zeros of Euler Polynomials -- On the Algebraic Order of Exactness of Formulas of Approximate Integration En línea: http://dx.doi.org/10.1007/978-0-387-34149-1 Link: https://biblioteca.cunef.edu/gestion/catalogo/index.php?lvl=notice_display&id=34808 Ejemplares
Signatura Medio Ubicación Sub-localización Sección Estado ningún ejemplar
Título : Abstract Parabolic Evolution Equations and their Applications Tipo de documento: documento electrónico Autores: Atsushi Yagi ; SpringerLink (Online service) Editorial: Berlin, Heidelberg : Springer Berlin Heidelberg Fecha de publicación: 2010 Colección: Springer Monographs in Mathematics, ISSN 1439-7382 Número de páginas: XVIII, 581 p. 6 illus Il.: online resource ISBN/ISSN/DL: 978-3-642-04631-5 Idioma : Inglés (eng) Palabras clave: Mathematics Dynamics Ergodic theory Partial differential equations Biomathematics Differential Equations Dynamical Systems and Theory Mathematical Computational Biology Clasificación: 51 Matemáticas Resumen: The semigroup methods are known as a powerful tool for analyzing nonlinear diffusion equations and systems. The author has studied abstract parabolic evolution equations and their applications to nonlinear diffusion equations and systems for more than 30 years. He gives first, after reviewing the theory of analytic semigroups, an overview of the theories of linear, semilinear and quasilinear abstract parabolic evolution equations as well as general strategies for constructing dynamical systems, attractors and stable-unstable manifolds associated with those nonlinear evolution equations. In the second half of the book, he shows how to apply the abstract results to various models in the real world focusing on various self-organization models: semiconductor model, activator-inhibitor model, B-Z reaction model, forest kinematic model, chemotaxis model, termite mound building model, phase transition model, and Lotka-Volterra competition model. The process and techniques are explained concretely in order to analyze nonlinear diffusion models by using the methods of abstract evolution equations. Thus the present book fills the gaps of related titles that either treat only very theoretical examples of equations or introduce many interesting models from Biology and Ecology, but do not base analytical arguments upon rigorous mathematical theories Nota de contenido: Preliminaries -- Sectorial Operators -- Linear Evolution Equations -- Semilinear Evolution Equations -- Quasilinear Evolution Equations -- Dynamical Systems -- Numerical Analysis -- Semiconductor Models -- Activator–Inhibitor Models -- Belousov–Zhabotinskii Reaction Models -- Forest Kinematic Model -- Chemotaxis Models -- Termite Mound Building Model -- Adsorbate-Induced Phase Transition Model -- Lotka–Volterra Competition Model with Cross-Diffusion -- Characterization of Domains of Fractional Powers En línea: http://dx.doi.org/10.1007/978-3-642-04631-5 Link: https://biblioteca.cunef.edu/gestion/catalogo/index.php?lvl=notice_display&id=33724 Abstract Parabolic Evolution Equations and their Applications [documento electrónico] / Atsushi Yagi ; SpringerLink (Online service) . - Berlin, Heidelberg : Springer Berlin Heidelberg, 2010 . - XVIII, 581 p. 6 illus : online resource. - (Springer Monographs in Mathematics, ISSN 1439-7382) .
ISBN : 978-3-642-04631-5
Idioma : Inglés (eng)
Palabras clave: Mathematics Dynamics Ergodic theory Partial differential equations Biomathematics Differential Equations Dynamical Systems and Theory Mathematical Computational Biology Clasificación: 51 Matemáticas Resumen: The semigroup methods are known as a powerful tool for analyzing nonlinear diffusion equations and systems. The author has studied abstract parabolic evolution equations and their applications to nonlinear diffusion equations and systems for more than 30 years. He gives first, after reviewing the theory of analytic semigroups, an overview of the theories of linear, semilinear and quasilinear abstract parabolic evolution equations as well as general strategies for constructing dynamical systems, attractors and stable-unstable manifolds associated with those nonlinear evolution equations. In the second half of the book, he shows how to apply the abstract results to various models in the real world focusing on various self-organization models: semiconductor model, activator-inhibitor model, B-Z reaction model, forest kinematic model, chemotaxis model, termite mound building model, phase transition model, and Lotka-Volterra competition model. The process and techniques are explained concretely in order to analyze nonlinear diffusion models by using the methods of abstract evolution equations. Thus the present book fills the gaps of related titles that either treat only very theoretical examples of equations or introduce many interesting models from Biology and Ecology, but do not base analytical arguments upon rigorous mathematical theories Nota de contenido: Preliminaries -- Sectorial Operators -- Linear Evolution Equations -- Semilinear Evolution Equations -- Quasilinear Evolution Equations -- Dynamical Systems -- Numerical Analysis -- Semiconductor Models -- Activator–Inhibitor Models -- Belousov–Zhabotinskii Reaction Models -- Forest Kinematic Model -- Chemotaxis Models -- Termite Mound Building Model -- Adsorbate-Induced Phase Transition Model -- Lotka–Volterra Competition Model with Cross-Diffusion -- Characterization of Domains of Fractional Powers En línea: http://dx.doi.org/10.1007/978-3-642-04631-5 Link: https://biblioteca.cunef.edu/gestion/catalogo/index.php?lvl=notice_display&id=33724 Ejemplares
Signatura Medio Ubicación Sub-localización Sección Estado ningún ejemplar Advances in Phase Space Analysis of Partial Differential Equations / SpringerLink (Online service) ; Antonio Bove ; Daniele del Santo ; M. K. Venkatesha Murthy (2009)
![]()
Título : Advances in Phase Space Analysis of Partial Differential Equations : In Honor of Ferruccio Colombini's 60th Birthday Tipo de documento: documento electrónico Autores: SpringerLink (Online service) ; Antonio Bove ; Daniele del Santo ; M. K. Venkatesha Murthy Editorial: Boston : Birkhäuser Boston Fecha de publicación: 2009 Colección: Progress in Nonlinear Differential Equations and Their Applications num. 78 Número de páginas: XIV, 292 p. 1 illus Il.: online resource ISBN/ISSN/DL: 978-0-8176-4861-9 Idioma : Inglés (eng) Palabras clave: Mathematics Mathematical analysis Analysis (Mathematics) Dynamics Ergodic theory Partial differential equations Functions of real variables Applied mathematics Engineering Physics Real Dynamical Systems and Theory Differential Equations Methods in Applications Clasificación: 51 Matemáticas Resumen: This collection of original articles and surveys addresses the recent advances in linear and nonlinear aspects of the theory of partial differential equations. Key topics include: * Operators as "sums of squares" of real and complex vector fields: both analytic hypoellipticity and regularity for very low regularity coefficients; * Nonlinear evolution equations: Navier–Stokes system, Strichartz estimates for the wave equation, instability and the Zakharov equation and eikonals; * Local solvability: its connection with subellipticity, local solvability for systems of vector fields in Gevrey classes; * Hyperbolic equations: the Cauchy problem and multiple characteristics, both positive and negative results. Graduate students at various levels as well as researchers in PDEs and related fields will find this an excellent resource. List of contributors: L. Ambrosio N. Lerner H. Bahouri X. Lu S. Berhanu J. Metcalfe J.-M. Bony T. Nishitani N. Dencker V. Petkov S. Ervedoza J. Rauch I. Gallagher M. Reissig J. Hounie L. Stoyanov E. Jannelli D. S. Tartakoff K. Kajitani D. Tataru A. Kurganov F. Treves G. Zampieri E. Zuazua Nota de contenido: Tangent Halfspaces to Sets of Finite Perimeter in Carnot Groups -- The Heat Kernel and Frequency Localized Functions on the Heisenberg Group -- A Generalization of the Rudin#x2013;Carleson Theorem -- Evolution Equations and Generalized Fourier Integral Operators -- The Solvability and Subellipticity of Systems of Pseudodifferential Operators -- Uniform Exponential Decay for Viscous Damped Systems#x002A; -- The Hyperbolic Symmetrizer: Theory and Applications -- Time Global Solutions to the Cauchy Problem for Multidimensional Kirchhoff Equations -- The Order of Accuracy of Quadrature Formulae for Periodic Functions -- A Note on the Oseen Kernels -- Instability Behavior and Loss of Regularity -- Decay Estimates for Variable Coefficient Wave Equations in Exterior Domains -- On Gevrey Well-Posedness of the Cauchy Problem for Some Noneffectively Hyperbolic Operators -- Singularities of the Scattering Kernel Related to Trapping Rays -- Analytic Hypoellipticity for a Sum of Squares of Vector Fields in #x211D; Whose Poisson Stratification Consists of a Single Symplectic Stratum of Codimension Four -- Multidimensional Soliton Integrodifferential Systems -- Selected lectures in Microlocal Analysis En línea: http://dx.doi.org/10.1007/978-0-8176-4861-9 Link: https://biblioteca.cunef.edu/gestion/catalogo/index.php?lvl=notice_display&id=33949 Advances in Phase Space Analysis of Partial Differential Equations : In Honor of Ferruccio Colombini's 60th Birthday [documento electrónico] / SpringerLink (Online service) ; Antonio Bove ; Daniele del Santo ; M. K. Venkatesha Murthy . - Boston : Birkhäuser Boston, 2009 . - XIV, 292 p. 1 illus : online resource. - (Progress in Nonlinear Differential Equations and Their Applications; 78) .
ISBN : 978-0-8176-4861-9
Idioma : Inglés (eng)
Palabras clave: Mathematics Mathematical analysis Analysis (Mathematics) Dynamics Ergodic theory Partial differential equations Functions of real variables Applied mathematics Engineering Physics Real Dynamical Systems and Theory Differential Equations Methods in Applications Clasificación: 51 Matemáticas Resumen: This collection of original articles and surveys addresses the recent advances in linear and nonlinear aspects of the theory of partial differential equations. Key topics include: * Operators as "sums of squares" of real and complex vector fields: both analytic hypoellipticity and regularity for very low regularity coefficients; * Nonlinear evolution equations: Navier–Stokes system, Strichartz estimates for the wave equation, instability and the Zakharov equation and eikonals; * Local solvability: its connection with subellipticity, local solvability for systems of vector fields in Gevrey classes; * Hyperbolic equations: the Cauchy problem and multiple characteristics, both positive and negative results. Graduate students at various levels as well as researchers in PDEs and related fields will find this an excellent resource. List of contributors: L. Ambrosio N. Lerner H. Bahouri X. Lu S. Berhanu J. Metcalfe J.-M. Bony T. Nishitani N. Dencker V. Petkov S. Ervedoza J. Rauch I. Gallagher M. Reissig J. Hounie L. Stoyanov E. Jannelli D. S. Tartakoff K. Kajitani D. Tataru A. Kurganov F. Treves G. Zampieri E. Zuazua Nota de contenido: Tangent Halfspaces to Sets of Finite Perimeter in Carnot Groups -- The Heat Kernel and Frequency Localized Functions on the Heisenberg Group -- A Generalization of the Rudin#x2013;Carleson Theorem -- Evolution Equations and Generalized Fourier Integral Operators -- The Solvability and Subellipticity of Systems of Pseudodifferential Operators -- Uniform Exponential Decay for Viscous Damped Systems#x002A; -- The Hyperbolic Symmetrizer: Theory and Applications -- Time Global Solutions to the Cauchy Problem for Multidimensional Kirchhoff Equations -- The Order of Accuracy of Quadrature Formulae for Periodic Functions -- A Note on the Oseen Kernels -- Instability Behavior and Loss of Regularity -- Decay Estimates for Variable Coefficient Wave Equations in Exterior Domains -- On Gevrey Well-Posedness of the Cauchy Problem for Some Noneffectively Hyperbolic Operators -- Singularities of the Scattering Kernel Related to Trapping Rays -- Analytic Hypoellipticity for a Sum of Squares of Vector Fields in #x211D; Whose Poisson Stratification Consists of a Single Symplectic Stratum of Codimension Four -- Multidimensional Soliton Integrodifferential Systems -- Selected lectures in Microlocal Analysis En línea: http://dx.doi.org/10.1007/978-0-8176-4861-9 Link: https://biblioteca.cunef.edu/gestion/catalogo/index.php?lvl=notice_display&id=33949 Ejemplares
Signatura Medio Ubicación Sub-localización Sección Estado ningún ejemplar Algebraic Analysis of Differential Equations / SpringerLink (Online service) ; Takashi Aoki ; Hideyuki Majima ; Takei, Yoshitsugu ; Nobuyuki Tose (2008)
![]()
Título : Algebraic Analysis of Differential Equations : from Microlocal Analysis to Exponential Asymptotics Festschrift in Honor of Takahiro Kawai Tipo de documento: documento electrónico Autores: SpringerLink (Online service) ; Takashi Aoki ; Hideyuki Majima ; Takei, Yoshitsugu ; Nobuyuki Tose Editorial: Tokyo : Springer Japan Fecha de publicación: 2008 Número de páginas: XVII, 352 p Il.: online resource ISBN/ISSN/DL: 978-4-431-73240-2 Idioma : Inglés (eng) Palabras clave: Mathematics Integral transforms Operational calculus Differential equations Partial differential Special functions Transforms, Calculus Ordinary Equations Functions Clasificación: 51 Matemáticas Nota de contenido: The work of T. Kawai -- Publications of Professor Takahiro Kawai -- The work of T. Kawai on hyperfunction theory and microlocal analysis -- The work of T. Kawai on hyperfunction theory and microlocal analysis -- The work of T. Kawai on exact WKB analysis -- Contributed papers -- Virtual turning points — A gift of microlocal analysis to the exact WKB analysis -- Regular sequences associated with the Noumi-Yamada equations with a large parameter -- Ghost busting: Making sense of non-Hermitian Hamiltonians -- Vanishing of the logarithmic trace of generalized Szegö projectors -- Nonlinear Stokes phenomena in first or second order differential equations -- Reconstruction of inclusions for the inverse boundary value problem for non-stationary heat equation -- Exact WKB analysis near a simple turning point -- The Borel transform -- On the use of Z-transforms in the summation of transseries for partial differential equations -- Some dynamical aspects of Painlevé VI -- An algebraic representation for correlation functions in integrable spin chains -- Inverse image of D-modules and quasi-b-functions -- The hypoelliptic Laplacian of J.-M. Bismut -- Commuting differential operators with regular singularities -- The behaviors of singular solutions of some partial differential equations in the complex domain -- Observations on the JWKB treatment of the quadratic barrier -- A role of virtual turning points and new Stokes curves in Stokes geometry of the quantum Hénon map -- Spectral instability for non-selfadjoint operators -- Boundary and lens rigidity, tensor tomography and analytic microlocal analysis -- Coupling of two partial differential equations and its application -- Instanton-type formal solutions for the first Painlevé hierarchy -- From exact-WKB toward singular quantum perturbation theory II -- WKB analysis and Poincaré theorem for vector fields En línea: http://dx.doi.org/10.1007/978-4-431-73240-2 Link: https://biblioteca.cunef.edu/gestion/catalogo/index.php?lvl=notice_display&id=34431 Algebraic Analysis of Differential Equations : from Microlocal Analysis to Exponential Asymptotics Festschrift in Honor of Takahiro Kawai [documento electrónico] / SpringerLink (Online service) ; Takashi Aoki ; Hideyuki Majima ; Takei, Yoshitsugu ; Nobuyuki Tose . - Tokyo : Springer Japan, 2008 . - XVII, 352 p : online resource.
ISBN : 978-4-431-73240-2
Idioma : Inglés (eng)
Palabras clave: Mathematics Integral transforms Operational calculus Differential equations Partial differential Special functions Transforms, Calculus Ordinary Equations Functions Clasificación: 51 Matemáticas Nota de contenido: The work of T. Kawai -- Publications of Professor Takahiro Kawai -- The work of T. Kawai on hyperfunction theory and microlocal analysis -- The work of T. Kawai on hyperfunction theory and microlocal analysis -- The work of T. Kawai on exact WKB analysis -- Contributed papers -- Virtual turning points — A gift of microlocal analysis to the exact WKB analysis -- Regular sequences associated with the Noumi-Yamada equations with a large parameter -- Ghost busting: Making sense of non-Hermitian Hamiltonians -- Vanishing of the logarithmic trace of generalized Szegö projectors -- Nonlinear Stokes phenomena in first or second order differential equations -- Reconstruction of inclusions for the inverse boundary value problem for non-stationary heat equation -- Exact WKB analysis near a simple turning point -- The Borel transform -- On the use of Z-transforms in the summation of transseries for partial differential equations -- Some dynamical aspects of Painlevé VI -- An algebraic representation for correlation functions in integrable spin chains -- Inverse image of D-modules and quasi-b-functions -- The hypoelliptic Laplacian of J.-M. Bismut -- Commuting differential operators with regular singularities -- The behaviors of singular solutions of some partial differential equations in the complex domain -- Observations on the JWKB treatment of the quadratic barrier -- A role of virtual turning points and new Stokes curves in Stokes geometry of the quantum Hénon map -- Spectral instability for non-selfadjoint operators -- Boundary and lens rigidity, tensor tomography and analytic microlocal analysis -- Coupling of two partial differential equations and its application -- Instanton-type formal solutions for the first Painlevé hierarchy -- From exact-WKB toward singular quantum perturbation theory II -- WKB analysis and Poincaré theorem for vector fields En línea: http://dx.doi.org/10.1007/978-4-431-73240-2 Link: https://biblioteca.cunef.edu/gestion/catalogo/index.php?lvl=notice_display&id=34431 Ejemplares
Signatura Medio Ubicación Sub-localización Sección Estado ningún ejemplar PermalinkAn Introduction to Delay Differential Equations with Applications to the Life Sciences / Smith, Hal (2011)
![]()
PermalinkPermalinkPermalinkAn Introduction to the Mathematical Theory of the Navier-Stokes Equations / Giovanni P. Galdi (2011)
![]()
Permalink