Resultado de la búsqueda
22 búsqueda de la palabra clave 'Mechanics,'




Título : Classical Mechanics : Theory and Mathematical Modeling Tipo de documento: documento electrónico Autores: DiBenedetto, Emmanuele ; SpringerLink (Online service) Editorial: Boston, MA : Birkhäuser Boston Fecha de publicación: 2011 Otro editor: Imprint: Birkhäuser Colección: Cornerstones Número de páginas: XX, 351 p. 63 illus Il.: online resource ISBN/ISSN/DL: 978-0-8176-4648-6 Idioma : Inglés (eng) Palabras clave: Mathematics Dynamics Ergodic theory Applied mathematics Engineering Geometry Physics Mechanics Mechanics, Applications of Mathematical Methods in Dynamical Systems and Theory Theoretical Clasificación: 51 Matemáticas Resumen: Classical mechanics is a chief example of the scientific method organizing a "complex" collection of information into theoretically rigorous, unifying principles; in this sense, mechanics represents one of the highest forms of mathematical modeling. This textbook covers standard topics of a mechanics course, namely, the mechanics of rigid bodies, Lagrangian and Hamiltonian formalism, stability and small oscillations, an introduction to celestial mechanics, and Hamilton–Jacobi theory, but at the same time features unique examples—such as the spinning top including friction and gyroscopic compass—seldom appearing in this context. In addition, variational principles like Lagrangian and Hamiltonian dynamics are treated in great detail. Using a pedagogical approach, the author covers many topics that are gradually developed and motivated by classical examples. Through `Problems and Complements' sections at the end of each chapter, the work presents various questions in an extended presentation that is extremely useful for an interdisciplinary audience trying to master the subject. Beautiful illustrations, unique examples, and useful remarks are key features throughout the text. Classical Mechanics: Theory and Mathematical Modeling may serve as a textbook for advanced graduate students in mathematics, physics, engineering, and the natural sciences, as well as an excellent reference or self-study guide for applied mathematicians and mathematical physicists. Prerequisites include a working knowledge of linear algebra, multivariate calculus, the basic theory of ordinary differential equations, and elementary physics Nota de contenido: Preface -- Geometry of Motion -- Constraints and Lagrangian Coordinates -- Dynamics of a Point Mass -- Geometry of Masses -- Systems Dynamics -- The Lagrange Equations -- Precessions -- Variational Principles -- Bibliography -- Index En línea: http://dx.doi.org/10.1007/978-0-8176-4648-6 Link: https://biblioteca.cunef.edu/gestion/catalogo/index.php?lvl=notice_display&id=33087 Classical Mechanics : Theory and Mathematical Modeling [documento electrónico] / DiBenedetto, Emmanuele ; SpringerLink (Online service) . - Boston, MA : Birkhäuser Boston : Imprint: Birkhäuser, 2011 . - XX, 351 p. 63 illus : online resource. - (Cornerstones) .
ISBN : 978-0-8176-4648-6
Idioma : Inglés (eng)
Palabras clave: Mathematics Dynamics Ergodic theory Applied mathematics Engineering Geometry Physics Mechanics Mechanics, Applications of Mathematical Methods in Dynamical Systems and Theory Theoretical Clasificación: 51 Matemáticas Resumen: Classical mechanics is a chief example of the scientific method organizing a "complex" collection of information into theoretically rigorous, unifying principles; in this sense, mechanics represents one of the highest forms of mathematical modeling. This textbook covers standard topics of a mechanics course, namely, the mechanics of rigid bodies, Lagrangian and Hamiltonian formalism, stability and small oscillations, an introduction to celestial mechanics, and Hamilton–Jacobi theory, but at the same time features unique examples—such as the spinning top including friction and gyroscopic compass—seldom appearing in this context. In addition, variational principles like Lagrangian and Hamiltonian dynamics are treated in great detail. Using a pedagogical approach, the author covers many topics that are gradually developed and motivated by classical examples. Through `Problems and Complements' sections at the end of each chapter, the work presents various questions in an extended presentation that is extremely useful for an interdisciplinary audience trying to master the subject. Beautiful illustrations, unique examples, and useful remarks are key features throughout the text. Classical Mechanics: Theory and Mathematical Modeling may serve as a textbook for advanced graduate students in mathematics, physics, engineering, and the natural sciences, as well as an excellent reference or self-study guide for applied mathematicians and mathematical physicists. Prerequisites include a working knowledge of linear algebra, multivariate calculus, the basic theory of ordinary differential equations, and elementary physics Nota de contenido: Preface -- Geometry of Motion -- Constraints and Lagrangian Coordinates -- Dynamics of a Point Mass -- Geometry of Masses -- Systems Dynamics -- The Lagrange Equations -- Precessions -- Variational Principles -- Bibliography -- Index En línea: http://dx.doi.org/10.1007/978-0-8176-4648-6 Link: https://biblioteca.cunef.edu/gestion/catalogo/index.php?lvl=notice_display&id=33087 Ejemplares
Signatura Medio Ubicación Sub-localización Sección Estado ningún ejemplar
Título : Non-Linear Mechanics Tipo de documento: documento electrónico Autores: SpringerLink (Online service) ; Graffi, Dario Editorial: Berlin, Heidelberg : Springer Berlin Heidelberg Fecha de publicación: 2011 Colección: C.I.M.E. Summer Schools num. 59 Número de páginas: IV, 396 p. 9 illus Il.: online resource ISBN/ISSN/DL: 978-3-642-10976-8 Idioma : Inglés (eng) Palabras clave: Mathematics Differential equations Physics Mechanics Mechanics, Applied Ordinary Equations Theoretical and Theoretical, Mathematical Computational Clasificación: 51 Matemáticas Resumen: L. Cesari: Non-linear analysis.- J.K. Hale: Oscillations in neutral functional differential equations.- M. Jean: Eléments de la théorie des équations différentielles avec commandes.- J. Mawhin: Un aperçu des recherches belges en théorie des equations différentielles ordinaires dans le champ réel entre 1967 et 1972.- Yu A. Mitropol´skii: Certains aspects des progrès de la methode de centrage.- Th. Vogel: Quelques problèmes non linéaires en physique mathématique Nota de contenido: L. Cesari: Non-linear analysis -- J.K. Hale: Oscillations in neutral functional differential equations -- M. Jean: Eléments de la théorie des équations différentielles avec commandes -- J. Mawhin: Un aperçu des recherches belges en théorie des equations différentielles ordinaires dans le champ réel entre 1967 et 1972 -- Yu A. Mitropol´skii: Certains aspects des progrès de la methode de centrage -- Th. Vogel: Quelques problèmes non linéaires en physique mathématique En línea: http://dx.doi.org/10.1007/978-3-642-10976-8 Link: https://biblioteca.cunef.edu/gestion/catalogo/index.php?lvl=notice_display&id=33309 Non-Linear Mechanics [documento electrónico] / SpringerLink (Online service) ; Graffi, Dario . - Berlin, Heidelberg : Springer Berlin Heidelberg, 2011 . - IV, 396 p. 9 illus : online resource. - (C.I.M.E. Summer Schools; 59) .
ISBN : 978-3-642-10976-8
Idioma : Inglés (eng)
Palabras clave: Mathematics Differential equations Physics Mechanics Mechanics, Applied Ordinary Equations Theoretical and Theoretical, Mathematical Computational Clasificación: 51 Matemáticas Resumen: L. Cesari: Non-linear analysis.- J.K. Hale: Oscillations in neutral functional differential equations.- M. Jean: Eléments de la théorie des équations différentielles avec commandes.- J. Mawhin: Un aperçu des recherches belges en théorie des equations différentielles ordinaires dans le champ réel entre 1967 et 1972.- Yu A. Mitropol´skii: Certains aspects des progrès de la methode de centrage.- Th. Vogel: Quelques problèmes non linéaires en physique mathématique Nota de contenido: L. Cesari: Non-linear analysis -- J.K. Hale: Oscillations in neutral functional differential equations -- M. Jean: Eléments de la théorie des équations différentielles avec commandes -- J. Mawhin: Un aperçu des recherches belges en théorie des equations différentielles ordinaires dans le champ réel entre 1967 et 1972 -- Yu A. Mitropol´skii: Certains aspects des progrès de la methode de centrage -- Th. Vogel: Quelques problèmes non linéaires en physique mathématique En línea: http://dx.doi.org/10.1007/978-3-642-10976-8 Link: https://biblioteca.cunef.edu/gestion/catalogo/index.php?lvl=notice_display&id=33309 Ejemplares
Signatura Medio Ubicación Sub-localización Sección Estado ningún ejemplar
Título : Principles of Engineering Mechanics : Volume 2 Dynamics—The Analysis of Motion Tipo de documento: documento electrónico Autores: Millard F. Beatty ; SpringerLink (Online service) Editorial: Boston, MA : Springer US Fecha de publicación: 2006 Colección: Mathematical Concepts and Methods in Science and Engineering num. 33 Número de páginas: XXII, 595 p. 244 illus Il.: online resource ISBN/ISSN/DL: 978-0-387-31255-2 Idioma : Inglés (eng) Palabras clave: Engineering Applied mathematics Mechanics Mechanics, Mechanical engineering Theoretical and Engineering, general Applications of Mathematics Clasificación: 51 Matemáticas Resumen: Separation of the elements of classical mechanics into kinematics and dynamics is an uncommon tutorial approach, but the author uses it to advantage in this two-volume set. Students gain a mastery of kinematics first – a solid foundation for the later study of the free-body formulation of the dynamics problem. A key objective of these volumes, which present a vector treatment of the principles of mechanics, is to help the student gain confidence in transforming problems into appropriate mathematical language that may be manipulated to give useful physical conclusions or specific numerical results. In the first volume, the elements of vector calculus and the matrix algebra are reviewed in appendices. Unusual mathematical topics, such as singularity functions and some elements of tensor analysis, are introduced within the text. A logical and systematic building of well-known kinematic concepts, theorems, and formulas, illustrated by examples and problems, is presented offering insights into both fundamentals and applications. Problems amplify the material and pave the way for advanced study of topics in mechanical design analysis, advanced kinematics of mechanisms and analytical dynamics, mechanical vibrations and controls, and continuum mechanics of solids and fluids. Volume I of Principles of Engineering Mechanics provides the basis for a stimulating and rewarding one-term course for advanced undergraduate and first-year graduate students specializing in mechanics, engineering science, engineering physics, applied mathematics, materials science, and mechanical, aerospace, and civil engineering. Professionals working in related fields of applied mathematics will find it a practical review and a quick reference for questions involving basic kinematics Nota de contenido: The Foundation Principles of Classical Mechanics -- Dynamics of a Particle -- Momentum, Work, and Energy -- Dynamics of a System of Particles -- The Moment of Inertia Tensor -- Dynamics of a Rigid Body -- to Advanced Dynamics En línea: http://dx.doi.org/10.1007/978-0-387-31255-2 Link: https://biblioteca.cunef.edu/gestion/catalogo/index.php?lvl=notice_display&id=34784 Principles of Engineering Mechanics : Volume 2 Dynamics—The Analysis of Motion [documento electrónico] / Millard F. Beatty ; SpringerLink (Online service) . - Boston, MA : Springer US, 2006 . - XXII, 595 p. 244 illus : online resource. - (Mathematical Concepts and Methods in Science and Engineering; 33) .
ISBN : 978-0-387-31255-2
Idioma : Inglés (eng)
Palabras clave: Engineering Applied mathematics Mechanics Mechanics, Mechanical engineering Theoretical and Engineering, general Applications of Mathematics Clasificación: 51 Matemáticas Resumen: Separation of the elements of classical mechanics into kinematics and dynamics is an uncommon tutorial approach, but the author uses it to advantage in this two-volume set. Students gain a mastery of kinematics first – a solid foundation for the later study of the free-body formulation of the dynamics problem. A key objective of these volumes, which present a vector treatment of the principles of mechanics, is to help the student gain confidence in transforming problems into appropriate mathematical language that may be manipulated to give useful physical conclusions or specific numerical results. In the first volume, the elements of vector calculus and the matrix algebra are reviewed in appendices. Unusual mathematical topics, such as singularity functions and some elements of tensor analysis, are introduced within the text. A logical and systematic building of well-known kinematic concepts, theorems, and formulas, illustrated by examples and problems, is presented offering insights into both fundamentals and applications. Problems amplify the material and pave the way for advanced study of topics in mechanical design analysis, advanced kinematics of mechanisms and analytical dynamics, mechanical vibrations and controls, and continuum mechanics of solids and fluids. Volume I of Principles of Engineering Mechanics provides the basis for a stimulating and rewarding one-term course for advanced undergraduate and first-year graduate students specializing in mechanics, engineering science, engineering physics, applied mathematics, materials science, and mechanical, aerospace, and civil engineering. Professionals working in related fields of applied mathematics will find it a practical review and a quick reference for questions involving basic kinematics Nota de contenido: The Foundation Principles of Classical Mechanics -- Dynamics of a Particle -- Momentum, Work, and Energy -- Dynamics of a System of Particles -- The Moment of Inertia Tensor -- Dynamics of a Rigid Body -- to Advanced Dynamics En línea: http://dx.doi.org/10.1007/978-0-387-31255-2 Link: https://biblioteca.cunef.edu/gestion/catalogo/index.php?lvl=notice_display&id=34784 Ejemplares
Signatura Medio Ubicación Sub-localización Sección Estado ningún ejemplar
Título : Introduction to Analytical Dynamics : Revised Edition Tipo de documento: documento electrónico Autores: Woodhouse, Nicholas ; SpringerLink (Online service) Editorial: London : Springer London Fecha de publicación: 2009 Colección: Springer Undergraduate Mathematics Series, ISSN 1615-2085 Número de páginas: XIII, 240 p. 42 illus Il.: online resource ISBN/ISSN/DL: 978-1-84882-816-2 Idioma : Inglés (eng) Palabras clave: Physics Applied mathematics Engineering Continuum physics Mechanics Mechanics, Theoretical, Mathematical and Computational Classical Applications of Mathematics Theoretical Clasificación: 51 Matemáticas Resumen: Analytical dynamics forms an important part of any undergraduate programme in applied mathematics and physics: it develops intuition about three-dimensional space and provides invaluable practice in problem solving. First published in 1987, this text is an introduction to the core ideas. It offers concise but clear explanations and derivations to give readers a confident grasp of the chain of argument that leads from Newton’s laws through Lagrange’s equations and Hamilton’s principle, to Hamilton’s equations and canonical transformations. This new edition has been extensively revised and updated to include: A chapter on symplectic geometry and the geometric interpretation of some of the coordinate calculations. A more systematic treatment of the conections with the phase-plane analysis of ODEs; and an improved treatment of Euler angles. A greater emphasis on the links to special relativity and quantum theory, e.g., linking Schrödinger’s equation to Hamilton-Jacobi theory, showing how ideas from this classical subject link into contemporary areas of mathematics and theoretical physics. Aimed at second- and third-year undergraduates, the book assumes some familiarity with elementary linear algebra, the chain rule for partial derivatives, and vector mechanics in three dimensions, although the latter is not essential. A wealth of examples show the subject in action and a range of exercises – with solutions – are provided to help test understanding Nota de contenido: Frames of Reference -- One Degree of Freedom -- Lagrangian Mechanics -- Noether#x2019;s Theorem -- Rigid Bodies -- Oscillations -- Hamiltonian Mechanics -- Geometry of Classical Mechanics -- Epilogue: Relativity and Quantum Theory En línea: http://dx.doi.org/10.1007/978-1-84882-816-2 Link: https://biblioteca.cunef.edu/gestion/catalogo/index.php?lvl=notice_display&id=33988 Introduction to Analytical Dynamics : Revised Edition [documento electrónico] / Woodhouse, Nicholas ; SpringerLink (Online service) . - London : Springer London, 2009 . - XIII, 240 p. 42 illus : online resource. - (Springer Undergraduate Mathematics Series, ISSN 1615-2085) .
ISBN : 978-1-84882-816-2
Idioma : Inglés (eng)
Palabras clave: Physics Applied mathematics Engineering Continuum physics Mechanics Mechanics, Theoretical, Mathematical and Computational Classical Applications of Mathematics Theoretical Clasificación: 51 Matemáticas Resumen: Analytical dynamics forms an important part of any undergraduate programme in applied mathematics and physics: it develops intuition about three-dimensional space and provides invaluable practice in problem solving. First published in 1987, this text is an introduction to the core ideas. It offers concise but clear explanations and derivations to give readers a confident grasp of the chain of argument that leads from Newton’s laws through Lagrange’s equations and Hamilton’s principle, to Hamilton’s equations and canonical transformations. This new edition has been extensively revised and updated to include: A chapter on symplectic geometry and the geometric interpretation of some of the coordinate calculations. A more systematic treatment of the conections with the phase-plane analysis of ODEs; and an improved treatment of Euler angles. A greater emphasis on the links to special relativity and quantum theory, e.g., linking Schrödinger’s equation to Hamilton-Jacobi theory, showing how ideas from this classical subject link into contemporary areas of mathematics and theoretical physics. Aimed at second- and third-year undergraduates, the book assumes some familiarity with elementary linear algebra, the chain rule for partial derivatives, and vector mechanics in three dimensions, although the latter is not essential. A wealth of examples show the subject in action and a range of exercises – with solutions – are provided to help test understanding Nota de contenido: Frames of Reference -- One Degree of Freedom -- Lagrangian Mechanics -- Noether#x2019;s Theorem -- Rigid Bodies -- Oscillations -- Hamiltonian Mechanics -- Geometry of Classical Mechanics -- Epilogue: Relativity and Quantum Theory En línea: http://dx.doi.org/10.1007/978-1-84882-816-2 Link: https://biblioteca.cunef.edu/gestion/catalogo/index.php?lvl=notice_display&id=33988 Ejemplares
Signatura Medio Ubicación Sub-localización Sección Estado ningún ejemplar Meshfree Methods for Partial Differential Equations IV / SpringerLink (Online service) ; Griebel, Michael ; Schweitzer, Marc Alexander (2008)
![]()
Título : Meshfree Methods for Partial Differential Equations IV Tipo de documento: documento electrónico Autores: SpringerLink (Online service) ; Griebel, Michael ; Schweitzer, Marc Alexander Editorial: Berlin, Heidelberg : Springer Berlin Heidelberg Fecha de publicación: 2008 Colección: Lecture Notes in Computational Science and Engineering, ISSN 1439-7358 num. 65 Número de páginas: VIII, 412 p. 157 illus Il.: online resource ISBN/ISSN/DL: 978-3-540-79994-8 Idioma : Inglés (eng) Palabras clave: Mathematics Mathematical analysis Analysis (Mathematics) Partial differential equations Applied mathematics Engineering Computer Mechanics Mechanics, Computational and Numerical Applications of Science Differential Equations Theoretical Clasificación: 51 Matemáticas Resumen: The numerical treatment of partial differential equations with particle methods and meshfree discretization techniques is a very active research field both in the mathematics and engineering community. Due to their independence of a mesh, particle schemes and meshfree methods can deal with large geometric changes of the domain more easily than classical discretization techniques. Furthermore, meshfree methods offer a promising approach for the coupling of particle models to continuous models. This volume of LNCSE is a collection of the proceedings papers of the Fourth International Workshop on Meshfree Methods held in September 2007 in Bonn. The articles address the different meshfree methods (SPH, PUM, GFEM, EFGM, RKPM, etc.) and their application in applied mathematics, physics and engineering. The volume is intended to foster this very active and exciting area of interdisciplinary research and to present recent advances and results in this field Nota de contenido: Circumventing Curse of Dimensionality in the Solution of Highly Multidimensional Models Encountered in Quantum Mechanics Using Meshfree Finite Sums Decomposition -- A Pressure Correction Approach Coupled with the MLPG Method for the Solution of the Navier-Stokes Equations -- Large Scale, Multiresolution Flow Simulations Using Remeshed Particle Methods -- On the Stabilization of Stress-Point Integration in the Element Free Galerkin Method -- The Partition of Unity Meshfree Method for Solving Transport-Reaction Equations on Complex Domains: Implementation and Applications in the Life Sciences -- Solving One Dimensional Scalar Conservation Laws by Particle Management -- Stability of Energy Transfer in the Weak Coupling Method -- Multiscale Approach for Quantum Systems -- A Meshless Technique Based on Integrated Radial Basis Function Networks for Elliptic Partial Differential Equations -- A Higher-Order Finite Volume Method Using Multiresolution Reproducing Kernels -- Interface Tracking in Meshfree Methods and its Applications -- A’posteriori Error Estimation Based on Higher Order Approximation in the Meshless Finite Difference Method -- Exact Bounds for Linear Outputs of the Convection-Diffusion-Reaction Equation Using Flux-Free Error Estimates -- Preparation of CAD and Molecular Surfaces for Meshfree Solvers -- 3D Meshfree Magnetohydrodynamics -- A Particle-Partition of Unity Method Part VIII: Hierarchical Enrichment -- A Framework For Studying The RKEM Representation of Discrete Point Sets -- Coupling of the CFD and the Droplet Population Balance Equation with the Finite Pointset Method -- Hybrid Methods for Fluid-Structure-Interaction Problems in Aeroelasticity En línea: http://dx.doi.org/10.1007/978-3-540-79994-8 Link: https://biblioteca.cunef.edu/gestion/catalogo/index.php?lvl=notice_display&id=34381 Meshfree Methods for Partial Differential Equations IV [documento electrónico] / SpringerLink (Online service) ; Griebel, Michael ; Schweitzer, Marc Alexander . - Berlin, Heidelberg : Springer Berlin Heidelberg, 2008 . - VIII, 412 p. 157 illus : online resource. - (Lecture Notes in Computational Science and Engineering, ISSN 1439-7358; 65) .
ISBN : 978-3-540-79994-8
Idioma : Inglés (eng)
Palabras clave: Mathematics Mathematical analysis Analysis (Mathematics) Partial differential equations Applied mathematics Engineering Computer Mechanics Mechanics, Computational and Numerical Applications of Science Differential Equations Theoretical Clasificación: 51 Matemáticas Resumen: The numerical treatment of partial differential equations with particle methods and meshfree discretization techniques is a very active research field both in the mathematics and engineering community. Due to their independence of a mesh, particle schemes and meshfree methods can deal with large geometric changes of the domain more easily than classical discretization techniques. Furthermore, meshfree methods offer a promising approach for the coupling of particle models to continuous models. This volume of LNCSE is a collection of the proceedings papers of the Fourth International Workshop on Meshfree Methods held in September 2007 in Bonn. The articles address the different meshfree methods (SPH, PUM, GFEM, EFGM, RKPM, etc.) and their application in applied mathematics, physics and engineering. The volume is intended to foster this very active and exciting area of interdisciplinary research and to present recent advances and results in this field Nota de contenido: Circumventing Curse of Dimensionality in the Solution of Highly Multidimensional Models Encountered in Quantum Mechanics Using Meshfree Finite Sums Decomposition -- A Pressure Correction Approach Coupled with the MLPG Method for the Solution of the Navier-Stokes Equations -- Large Scale, Multiresolution Flow Simulations Using Remeshed Particle Methods -- On the Stabilization of Stress-Point Integration in the Element Free Galerkin Method -- The Partition of Unity Meshfree Method for Solving Transport-Reaction Equations on Complex Domains: Implementation and Applications in the Life Sciences -- Solving One Dimensional Scalar Conservation Laws by Particle Management -- Stability of Energy Transfer in the Weak Coupling Method -- Multiscale Approach for Quantum Systems -- A Meshless Technique Based on Integrated Radial Basis Function Networks for Elliptic Partial Differential Equations -- A Higher-Order Finite Volume Method Using Multiresolution Reproducing Kernels -- Interface Tracking in Meshfree Methods and its Applications -- A’posteriori Error Estimation Based on Higher Order Approximation in the Meshless Finite Difference Method -- Exact Bounds for Linear Outputs of the Convection-Diffusion-Reaction Equation Using Flux-Free Error Estimates -- Preparation of CAD and Molecular Surfaces for Meshfree Solvers -- 3D Meshfree Magnetohydrodynamics -- A Particle-Partition of Unity Method Part VIII: Hierarchical Enrichment -- A Framework For Studying The RKEM Representation of Discrete Point Sets -- Coupling of the CFD and the Droplet Population Balance Equation with the Finite Pointset Method -- Hybrid Methods for Fluid-Structure-Interaction Problems in Aeroelasticity En línea: http://dx.doi.org/10.1007/978-3-540-79994-8 Link: https://biblioteca.cunef.edu/gestion/catalogo/index.php?lvl=notice_display&id=34381 Ejemplares
Signatura Medio Ubicación Sub-localización Sección Estado ningún ejemplar PermalinkSpecial Topics in the Theory of Piezoelectricity / SpringerLink (Online service) ; Yang, Jiashi (2009)
![]()
PermalinkPermalinkInstability in Models Connected with Fluid Flows I / SpringerLink (Online service) ; Claude Bardos ; Fursikov, Andrei (2008)
![]()
PermalinkInstability in Models Connected with Fluid Flows II / SpringerLink (Online service) ; Claude Bardos ; Fursikov, Andrei (2008)
![]()
Permalink