Resultado de la búsqueda
95 búsqueda de la palabra clave 'Lie'



Lie Groups: Structure, Actions, and Representations / SpringerLink (Online service) ; Alan T. Huckleberry ; Ivan Penkov ; Gregg Zuckerman (2013)
![]()
Título : Lie Groups: Structure, Actions, and Representations : In Honor of Joseph A. Wolf on the Occasion of his 75th Birthday Tipo de documento: documento electrónico Autores: SpringerLink (Online service) ; Alan T. Huckleberry ; Ivan Penkov ; Gregg Zuckerman Editorial: New York, NY : Springer New York Fecha de publicación: 2013 Otro editor: Imprint: Birkhäuser Colección: Progress in Mathematics, ISSN 0743-1643 num. 306 Número de páginas: XIV, 413 p Il.: online resource ISBN/ISSN/DL: 978-1-4614-7193-6 Idioma : Inglés (eng) Palabras clave: Mathematics Associative rings Rings (Algebra) Topological groups Lie Functional analysis Groups, Groups and Algebras Analysis Clasificación: 51 Matemáticas Resumen: Lie Groups: Structures, Actions, and Representations, In Honor of Joseph A. Wolf on the Occasion of his 75th Birthday consists of invited expository and research articles on new developments arising from Wolf's profound contributions to mathematics. Due to Professor Wolf’s broad interests, outstanding mathematicians and scholars in a wide spectrum of mathematical fields contributed to the volume. Algebraic, geometric, and analytic methods are employed. More precisely, finite groups and classical finite dimensional, as well as infinite-dimensional Lie groups, and algebras play a role. Actions on classical symmetric spaces, and on abstract homogeneous and representation spaces are discussed. Contributions in the area of representation theory involve numerous viewpoints, including that of algebraic groups and various analytic aspects of harmonic analysis. Contributors D. Akhiezer T. Oshima A. Andrada I. Pacharoni M. L. Barberis F. Ricci L. Barchini S. Rosenberg I. Dotti N. Shimeno M. Eastwood J. Tirao V. Fischer S. Treneer T. Kobayashi C.T.C. Wall A. Korányi D. Wallace B. Kostant K. Wiboonton P. Kostelec F. Xu K.-H. Neeb O. Yakimova G. Olafsson R. Zierau B. Ørsted Nota de contenido: Preface -- Real group orbits on flag manifolds -- Complex connections with trivial holonomy -- Indefinite harmonic theory and harmonic spinors -- Twistor theory and the harmonic hull -- Nilpotent Gelfand pairs and spherical transforms of Schwartz functions, II: Taylor expansions on singular sets -- Propagation of the multiplicity-freeness property for holomorphic vector bundles -- Poisson transforms for line bundles from the Shilov boundary to bounded symmetric domains -- Cent(U(n)), cascade of orthogonal roots, and a construction of Lipsman–Wolf -- Weakly harmonic Maaß forms and the principal series for SL(2,R) -- Holomorphic realization of unitary representations of Banach-Lie groups -- The Segal–Bargmann transform on compact symmetric spaces and their direct limits -- Analysis on flag manifolds and Sobolev inequalities -- Boundary value problems on Riemannian symmetric spaces of noncompact type -- One step spherical functions of the pair (SU(n + 1), U(n)) -- Chern–Weil theory for certain infinite-dimensional Lie groups -- On the structure of finite groups with periodic cohomology En línea: http://dx.doi.org/10.1007/978-1-4614-7193-6 Link: https://biblioteca.cunef.edu/gestion/catalogo/index.php?lvl=notice_display&id=32340 Lie Groups: Structure, Actions, and Representations : In Honor of Joseph A. Wolf on the Occasion of his 75th Birthday [documento electrónico] / SpringerLink (Online service) ; Alan T. Huckleberry ; Ivan Penkov ; Gregg Zuckerman . - New York, NY : Springer New York : Imprint: Birkhäuser, 2013 . - XIV, 413 p : online resource. - (Progress in Mathematics, ISSN 0743-1643; 306) .
ISBN : 978-1-4614-7193-6
Idioma : Inglés (eng)
Palabras clave: Mathematics Associative rings Rings (Algebra) Topological groups Lie Functional analysis Groups, Groups and Algebras Analysis Clasificación: 51 Matemáticas Resumen: Lie Groups: Structures, Actions, and Representations, In Honor of Joseph A. Wolf on the Occasion of his 75th Birthday consists of invited expository and research articles on new developments arising from Wolf's profound contributions to mathematics. Due to Professor Wolf’s broad interests, outstanding mathematicians and scholars in a wide spectrum of mathematical fields contributed to the volume. Algebraic, geometric, and analytic methods are employed. More precisely, finite groups and classical finite dimensional, as well as infinite-dimensional Lie groups, and algebras play a role. Actions on classical symmetric spaces, and on abstract homogeneous and representation spaces are discussed. Contributions in the area of representation theory involve numerous viewpoints, including that of algebraic groups and various analytic aspects of harmonic analysis. Contributors D. Akhiezer T. Oshima A. Andrada I. Pacharoni M. L. Barberis F. Ricci L. Barchini S. Rosenberg I. Dotti N. Shimeno M. Eastwood J. Tirao V. Fischer S. Treneer T. Kobayashi C.T.C. Wall A. Korányi D. Wallace B. Kostant K. Wiboonton P. Kostelec F. Xu K.-H. Neeb O. Yakimova G. Olafsson R. Zierau B. Ørsted Nota de contenido: Preface -- Real group orbits on flag manifolds -- Complex connections with trivial holonomy -- Indefinite harmonic theory and harmonic spinors -- Twistor theory and the harmonic hull -- Nilpotent Gelfand pairs and spherical transforms of Schwartz functions, II: Taylor expansions on singular sets -- Propagation of the multiplicity-freeness property for holomorphic vector bundles -- Poisson transforms for line bundles from the Shilov boundary to bounded symmetric domains -- Cent(U(n)), cascade of orthogonal roots, and a construction of Lipsman–Wolf -- Weakly harmonic Maaß forms and the principal series for SL(2,R) -- Holomorphic realization of unitary representations of Banach-Lie groups -- The Segal–Bargmann transform on compact symmetric spaces and their direct limits -- Analysis on flag manifolds and Sobolev inequalities -- Boundary value problems on Riemannian symmetric spaces of noncompact type -- One step spherical functions of the pair (SU(n + 1), U(n)) -- Chern–Weil theory for certain infinite-dimensional Lie groups -- On the structure of finite groups with periodic cohomology En línea: http://dx.doi.org/10.1007/978-1-4614-7193-6 Link: https://biblioteca.cunef.edu/gestion/catalogo/index.php?lvl=notice_display&id=32340 Ejemplares
Signatura Medio Ubicación Sub-localización Sección Estado ningún ejemplar
Título : Lie Algebras and Algebraic Groups Tipo de documento: documento electrónico Autores: Patrice Tauvel ; SpringerLink (Online service) ; Rupert W. T. Yu Editorial: Berlin, Heidelberg : Springer Berlin Heidelberg Fecha de publicación: 2005 Colección: Springer Monographs in Mathematics, ISSN 1439-7382 Número de páginas: XVI, 656 p Il.: online resource ISBN/ISSN/DL: 978-3-540-27427-8 Idioma : Inglés (eng) Palabras clave: Mathematics Algebra Algebraic geometry Group theory Nonassociative rings Rings (Algebra) Topological groups Lie Non-associative and Algebras Groups, Groups Geometry Theory Generalizations Clasificación: 51 Matemáticas Resumen: The theory of Lie algebras and algebraic groups has been an area of active research in the last 50 years. It intervenes in many different areas of mathematics: for example invariant theory, Poisson geometry, harmonic analysis, mathematical physics. The aim of this book is to assemble in a single volume the algebraic aspects of the theory so as to present the foundation of the theory in characteristic zero. Detailed proofs are included and some recent results are discussed in the last chapters. All the prerequisites on commutative algebra and algebraic geometry are included Nota de contenido: Results on topological spaces -- Rings and modules -- Integral extensions -- Factorial rings -- Field extensions -- Finitely generated algebras -- Gradings and filtrations -- Inductive limits -- Sheaves of functions -- Jordan decomposition and some basic results on groups -- Algebraic sets -- Prevarieties and varieties -- Projective varieties -- Dimension -- Morphisms and dimension -- Tangent spaces -- Normal varieties -- Root systems -- Lie algebras -- Semisimple and reductive Lie algebras -- Algebraic groups -- Affine algebraic groups -- Lie algebra of an algebraic group -- Correspondence between groups and Lie algebras -- Homogeneous spaces and quotients -- Solvable groups -- Reductive groups -- Borel subgroups, parabolic subgroups, Cartan subgroups -- Cartan subalgebras, Borel subalgebras and parabolic subalgebras -- Representations of semisimple Lie algebras -- Symmetric invariants -- S-triples -- Polarizations -- Results on orbits -- Centralizers -- ?-root systems -- Symmetric Lie algebras -- Semisimple symmetric Lie algebras -- Sheets of Lie algebras -- Index and linear forms En línea: http://dx.doi.org/10.1007/b139060 Link: https://biblioteca.cunef.edu/gestion/catalogo/index.php?lvl=notice_display&id=35280 Lie Algebras and Algebraic Groups [documento electrónico] / Patrice Tauvel ; SpringerLink (Online service) ; Rupert W. T. Yu . - Berlin, Heidelberg : Springer Berlin Heidelberg, 2005 . - XVI, 656 p : online resource. - (Springer Monographs in Mathematics, ISSN 1439-7382) .
ISBN : 978-3-540-27427-8
Idioma : Inglés (eng)
Palabras clave: Mathematics Algebra Algebraic geometry Group theory Nonassociative rings Rings (Algebra) Topological groups Lie Non-associative and Algebras Groups, Groups Geometry Theory Generalizations Clasificación: 51 Matemáticas Resumen: The theory of Lie algebras and algebraic groups has been an area of active research in the last 50 years. It intervenes in many different areas of mathematics: for example invariant theory, Poisson geometry, harmonic analysis, mathematical physics. The aim of this book is to assemble in a single volume the algebraic aspects of the theory so as to present the foundation of the theory in characteristic zero. Detailed proofs are included and some recent results are discussed in the last chapters. All the prerequisites on commutative algebra and algebraic geometry are included Nota de contenido: Results on topological spaces -- Rings and modules -- Integral extensions -- Factorial rings -- Field extensions -- Finitely generated algebras -- Gradings and filtrations -- Inductive limits -- Sheaves of functions -- Jordan decomposition and some basic results on groups -- Algebraic sets -- Prevarieties and varieties -- Projective varieties -- Dimension -- Morphisms and dimension -- Tangent spaces -- Normal varieties -- Root systems -- Lie algebras -- Semisimple and reductive Lie algebras -- Algebraic groups -- Affine algebraic groups -- Lie algebra of an algebraic group -- Correspondence between groups and Lie algebras -- Homogeneous spaces and quotients -- Solvable groups -- Reductive groups -- Borel subgroups, parabolic subgroups, Cartan subgroups -- Cartan subalgebras, Borel subalgebras and parabolic subalgebras -- Representations of semisimple Lie algebras -- Symmetric invariants -- S-triples -- Polarizations -- Results on orbits -- Centralizers -- ?-root systems -- Symmetric Lie algebras -- Semisimple symmetric Lie algebras -- Sheets of Lie algebras -- Index and linear forms En línea: http://dx.doi.org/10.1007/b139060 Link: https://biblioteca.cunef.edu/gestion/catalogo/index.php?lvl=notice_display&id=35280 Ejemplares
Signatura Medio Ubicación Sub-localización Sección Estado ningún ejemplar
Título : Lie Groups Tipo de documento: documento electrónico Autores: Daniel Bump ; SpringerLink (Online service) Editorial: New York, NY : Springer New York Fecha de publicación: 2013 Otro editor: Imprint: Springer Colección: Graduate Texts in Mathematics, ISSN 0072-5285 num. 225 Número de páginas: XIII, 551 p. 90 illus Il.: online resource ISBN/ISSN/DL: 978-1-4614-8024-2 Idioma : Inglés (eng) Palabras clave: Mathematics Topological groups Lie Groups, Groups Clasificación: 51 Matemáticas Resumen: This book is intended for a one-year graduate course on Lie groups and Lie algebras. The book goes beyond the representation theory of compact Lie groups, which is the basis of many texts, and provides a carefully chosen range of material to give the student the bigger picture. The book is organized to allow different paths through the material depending on one's interests. This second edition has substantial new material, including improved discussions of underlying principles, streamlining of some proofs, and many results and topics that were not in the first edition. For compact Lie groups, the book covers the Peter–Weyl theorem, Lie algebra, conjugacy of maximal tori, the Weyl group, roots and weights, Weyl character formula, the fundamental group and more. The book continues with the study of complex analytic groups and general noncompact Lie groups, covering the Bruhat decomposition, Coxeter groups, flag varieties, symmetric spaces, Satake diagrams, embeddings of Lie groups and spin. Other topics that are treated are symmetric function theory, the representation theory of the symmetric group, Frobenius–Schur duality and GL(n) * GL(m) duality with many applications including some in random matrix theory, branching rules, Toeplitz determinants, combinatorics of tableaux, Gelfand pairs, Hecke algebras, the "philosophy of cusp forms" and the cohomology of Grassmannians. An appendix introduces the reader to the use of Sage mathematical software for Lie group computations Nota de contenido: Part I: Compact Topological Groups -- 1 Haar Measure -- 2 Schur Orthogonality -- 3 Compact Operators -- 4 The Peter–Weyl Theorem -- Part II: Compact Lie Groups -- 5 Lie Subgroups of GL(n,C) -- 6 Vector Fields -- 7 Left-Invariant Vector Fields -- 8 The Exponential Map -- 9 Tensors and Universal Properties -- 10 The Universal Enveloping Algebra -- 11 Extension of Scalars -- 12 Representations of sl(2,C) -- 13 The Universal Cover -- 14 The Local Frobenius Theorem -- 15 Tori -- 16 Geodesics and Maximal Tori -- 17 The Weyl Integration Formula -- 18 The Root System -- 19 Examples of Root Systems -- 20 Abstract Weyl Groups -- 21 Highest Weight Vectors -- 22 The Weyl Character Formula -- 23 The Fundamental Group -- Part III: Noncompact Lie Groups -- 24 Complexification -- 25 Coxeter Groups -- 26 The Borel Subgroup.- 27 The Bruhat Decomposition -- 28 Symmetric Spaces.- 29 Relative Root Systems.- 30 Embeddings of Lie Groups -- 31 Spin -- Part IV: Duality and Other Topics -- 32 Mackey Theory -- 33 Characters of GL(n,C) -- 34 Duality between Sk and GL(n,C) -- 35 The Jacobi–Trudi Identity -- 36 Schur Polynomials and GL(n,C) -- 37 Schur Polynomials and Sk. 38 The Cauchy Identity -- 39 Random Matrix Theory -- 40 Symmetric Group Branching Rules and Tableaux -- 41 Unitary Branching Rules and Tableaux -- 42 Minors of Toeplitz Matrices -- 43 The Involution Model for Sk -- 44 Some Symmetric Alegras -- 45 Gelfand Pairs -- 46 Hecke Algebras -- 47 The Philosophy of Cusp Forms.- 48 Cohomology of Grassmannians -- Appendix: Sage -- References -- Index En línea: http://dx.doi.org/10.1007/978-1-4614-8024-2 Link: https://biblioteca.cunef.edu/gestion/catalogo/index.php?lvl=notice_display&id=32376 Lie Groups [documento electrónico] / Daniel Bump ; SpringerLink (Online service) . - New York, NY : Springer New York : Imprint: Springer, 2013 . - XIII, 551 p. 90 illus : online resource. - (Graduate Texts in Mathematics, ISSN 0072-5285; 225) .
ISBN : 978-1-4614-8024-2
Idioma : Inglés (eng)
Palabras clave: Mathematics Topological groups Lie Groups, Groups Clasificación: 51 Matemáticas Resumen: This book is intended for a one-year graduate course on Lie groups and Lie algebras. The book goes beyond the representation theory of compact Lie groups, which is the basis of many texts, and provides a carefully chosen range of material to give the student the bigger picture. The book is organized to allow different paths through the material depending on one's interests. This second edition has substantial new material, including improved discussions of underlying principles, streamlining of some proofs, and many results and topics that were not in the first edition. For compact Lie groups, the book covers the Peter–Weyl theorem, Lie algebra, conjugacy of maximal tori, the Weyl group, roots and weights, Weyl character formula, the fundamental group and more. The book continues with the study of complex analytic groups and general noncompact Lie groups, covering the Bruhat decomposition, Coxeter groups, flag varieties, symmetric spaces, Satake diagrams, embeddings of Lie groups and spin. Other topics that are treated are symmetric function theory, the representation theory of the symmetric group, Frobenius–Schur duality and GL(n) * GL(m) duality with many applications including some in random matrix theory, branching rules, Toeplitz determinants, combinatorics of tableaux, Gelfand pairs, Hecke algebras, the "philosophy of cusp forms" and the cohomology of Grassmannians. An appendix introduces the reader to the use of Sage mathematical software for Lie group computations Nota de contenido: Part I: Compact Topological Groups -- 1 Haar Measure -- 2 Schur Orthogonality -- 3 Compact Operators -- 4 The Peter–Weyl Theorem -- Part II: Compact Lie Groups -- 5 Lie Subgroups of GL(n,C) -- 6 Vector Fields -- 7 Left-Invariant Vector Fields -- 8 The Exponential Map -- 9 Tensors and Universal Properties -- 10 The Universal Enveloping Algebra -- 11 Extension of Scalars -- 12 Representations of sl(2,C) -- 13 The Universal Cover -- 14 The Local Frobenius Theorem -- 15 Tori -- 16 Geodesics and Maximal Tori -- 17 The Weyl Integration Formula -- 18 The Root System -- 19 Examples of Root Systems -- 20 Abstract Weyl Groups -- 21 Highest Weight Vectors -- 22 The Weyl Character Formula -- 23 The Fundamental Group -- Part III: Noncompact Lie Groups -- 24 Complexification -- 25 Coxeter Groups -- 26 The Borel Subgroup.- 27 The Bruhat Decomposition -- 28 Symmetric Spaces.- 29 Relative Root Systems.- 30 Embeddings of Lie Groups -- 31 Spin -- Part IV: Duality and Other Topics -- 32 Mackey Theory -- 33 Characters of GL(n,C) -- 34 Duality between Sk and GL(n,C) -- 35 The Jacobi–Trudi Identity -- 36 Schur Polynomials and GL(n,C) -- 37 Schur Polynomials and Sk. 38 The Cauchy Identity -- 39 Random Matrix Theory -- 40 Symmetric Group Branching Rules and Tableaux -- 41 Unitary Branching Rules and Tableaux -- 42 Minors of Toeplitz Matrices -- 43 The Involution Model for Sk -- 44 Some Symmetric Alegras -- 45 Gelfand Pairs -- 46 Hecke Algebras -- 47 The Philosophy of Cusp Forms.- 48 Cohomology of Grassmannians -- Appendix: Sage -- References -- Index En línea: http://dx.doi.org/10.1007/978-1-4614-8024-2 Link: https://biblioteca.cunef.edu/gestion/catalogo/index.php?lvl=notice_display&id=32376 Ejemplares
Signatura Medio Ubicación Sub-localización Sección Estado ningún ejemplar
Título : Lie Theory and Its Applications in Physics : IX International Workshop Tipo de documento: documento electrónico Autores: SpringerLink (Online service) ; Vladimir Dobrev Editorial: Tokyo : Springer Japan Fecha de publicación: 2013 Otro editor: Imprint: Springer Colección: Springer Proceedings in Mathematics & Statistics, ISSN 2194-1009 num. 36 Número de páginas: XIV, 554 p Il.: online resource ISBN/ISSN/DL: 978-4-431-54270-4 Idioma : Inglés (eng) Palabras clave: Mathematics Algebra Topological groups Lie Geometry Mathematical physics Groups, Groups Physics Clasificación: 51 Matemáticas Resumen: Traditionally, Lie Theory is a tool to build mathematical models for physical systems. Recently, the trend is towards geometrisation of the mathematical description of physical systems and objects. A geometric approach to a system yields in general some notion of symmetry which is very helpful in understanding its structure. Geometrisation and symmetries are meant in their broadest sense, i.e., classical geometry, differential geometry, groups and quantum groups, infinite-dimensional (super-)algebras, and their representations. Furthermore, we include the necessary tools from functional analysis and number theory. This is a large interdisciplinary and interrelated field. Samples of these new trends are presented in this volume, based on contributions from the Workshop “Lie Theory and Its Applications in Physics” held near Varna, Bulgaria, in June 2011. This book is suitable for an extensive audience of mathematicians, mathematical physicists, theoretical physicists, and researchers in the field of Lie Theory En línea: http://dx.doi.org/10.1007/978-4-431-54270-4 Link: https://biblioteca.cunef.edu/gestion/catalogo/index.php?lvl=notice_display&id=32613 Lie Theory and Its Applications in Physics : IX International Workshop [documento electrónico] / SpringerLink (Online service) ; Vladimir Dobrev . - Tokyo : Springer Japan : Imprint: Springer, 2013 . - XIV, 554 p : online resource. - (Springer Proceedings in Mathematics & Statistics, ISSN 2194-1009; 36) .
ISBN : 978-4-431-54270-4
Idioma : Inglés (eng)
Palabras clave: Mathematics Algebra Topological groups Lie Geometry Mathematical physics Groups, Groups Physics Clasificación: 51 Matemáticas Resumen: Traditionally, Lie Theory is a tool to build mathematical models for physical systems. Recently, the trend is towards geometrisation of the mathematical description of physical systems and objects. A geometric approach to a system yields in general some notion of symmetry which is very helpful in understanding its structure. Geometrisation and symmetries are meant in their broadest sense, i.e., classical geometry, differential geometry, groups and quantum groups, infinite-dimensional (super-)algebras, and their representations. Furthermore, we include the necessary tools from functional analysis and number theory. This is a large interdisciplinary and interrelated field. Samples of these new trends are presented in this volume, based on contributions from the Workshop “Lie Theory and Its Applications in Physics” held near Varna, Bulgaria, in June 2011. This book is suitable for an extensive audience of mathematicians, mathematical physicists, theoretical physicists, and researchers in the field of Lie Theory En línea: http://dx.doi.org/10.1007/978-4-431-54270-4 Link: https://biblioteca.cunef.edu/gestion/catalogo/index.php?lvl=notice_display&id=32613 Ejemplares
Signatura Medio Ubicación Sub-localización Sección Estado ningún ejemplar
Título : Lie Theory : Harmonic Analysis on Symmetric Spaces—General Plancherel Theorems Tipo de documento: documento electrónico Autores: SpringerLink (Online service) ; Jean-Philippe Anker ; Bent Orsted Editorial: Boston, MA : Birkhäuser Boston Fecha de publicación: 2005 Colección: Progress in Mathematics num. 230 Número de páginas: VIII, 175 p. 3 illus Il.: online resource ISBN/ISSN/DL: 978-0-8176-4426-0 Idioma : Inglés (eng) Palabras clave: Mathematics Group theory Topological groups Lie Harmonic analysis Functions of complex variables Differential geometry Groups, Groups Abstract Analysis Geometry Several Complex Variables and Analytic Spaces Theory Generalizations Clasificación: 51 Matemáticas Resumen: Semisimple Lie groups, and their algebraic analogues over fields other than the reals, are of fundamental importance in geometry, analysis, and mathematical physics. Three independent, self-contained volumes, under the general title Lie Theory, feature survey work and original results by well-established researchers in key areas of semisimple Lie theory. Harmonic Analysis on Symmetric Spaces—General Plancherel Theorems presents extensive surveys by E.P. van den Ban, H. Schlichtkrull, and P. Delorme of the spectacular progress over the past decade in deriving the Plancherel theorem on reductive symmetric spaces. Van den Ban’s introductory chapter explains the basic setup of a reductive symmetric space along with a careful study of the structure theory, particularly for the ring of invariant differential operators for the relevant class of parabolic subgroups. Advanced topics for the formulation and understanding of the proof are covered, including Eisenstein integrals, regularity theorems, Maass–Selberg relations, and residue calculus for root systems. Schlichtkrull provides a cogent account of the basic ingredients in the harmonic analysis on a symmetric space through the explanation and definition of the Paley–Wiener theorem. Approaching the Plancherel theorem through an alternative viewpoint, the Schwartz space, Delorme bases his discussion and proof on asymptotic expansions of eigenfunctions and the theory of intertwining integrals. Well suited for both graduate students and researchers in semisimple Lie theory and neighboring fields, possibly even mathematical cosmology, Harmonic Analysis on Symmetric Spaces—General Plancherel Theorems provides a broad, clearly focused examination of semisimple Lie groups and their integral importance and applications to research in many branches of mathematics and physics. Knowledge of basic representation theory of Lie groups as well as familiarity with semisimple Lie groups, symmetric spaces, and parabolic subgroups is required Nota de contenido: The Plancherel Theorem for a Reductive Symmetric Space -- The Paley—Wiener Theorem for a Reductive Symmetric Space -- The Plancherel Formula on Reductive Symmetric Spaces from the Point of View of the Schwartz Space En línea: http://dx.doi.org/10.1007/b138865 Link: https://biblioteca.cunef.edu/gestion/catalogo/index.php?lvl=notice_display&id=35183 Lie Theory : Harmonic Analysis on Symmetric Spaces—General Plancherel Theorems [documento electrónico] / SpringerLink (Online service) ; Jean-Philippe Anker ; Bent Orsted . - Boston, MA : Birkhäuser Boston, 2005 . - VIII, 175 p. 3 illus : online resource. - (Progress in Mathematics; 230) .
ISBN : 978-0-8176-4426-0
Idioma : Inglés (eng)
Palabras clave: Mathematics Group theory Topological groups Lie Harmonic analysis Functions of complex variables Differential geometry Groups, Groups Abstract Analysis Geometry Several Complex Variables and Analytic Spaces Theory Generalizations Clasificación: 51 Matemáticas Resumen: Semisimple Lie groups, and their algebraic analogues over fields other than the reals, are of fundamental importance in geometry, analysis, and mathematical physics. Three independent, self-contained volumes, under the general title Lie Theory, feature survey work and original results by well-established researchers in key areas of semisimple Lie theory. Harmonic Analysis on Symmetric Spaces—General Plancherel Theorems presents extensive surveys by E.P. van den Ban, H. Schlichtkrull, and P. Delorme of the spectacular progress over the past decade in deriving the Plancherel theorem on reductive symmetric spaces. Van den Ban’s introductory chapter explains the basic setup of a reductive symmetric space along with a careful study of the structure theory, particularly for the ring of invariant differential operators for the relevant class of parabolic subgroups. Advanced topics for the formulation and understanding of the proof are covered, including Eisenstein integrals, regularity theorems, Maass–Selberg relations, and residue calculus for root systems. Schlichtkrull provides a cogent account of the basic ingredients in the harmonic analysis on a symmetric space through the explanation and definition of the Paley–Wiener theorem. Approaching the Plancherel theorem through an alternative viewpoint, the Schwartz space, Delorme bases his discussion and proof on asymptotic expansions of eigenfunctions and the theory of intertwining integrals. Well suited for both graduate students and researchers in semisimple Lie theory and neighboring fields, possibly even mathematical cosmology, Harmonic Analysis on Symmetric Spaces—General Plancherel Theorems provides a broad, clearly focused examination of semisimple Lie groups and their integral importance and applications to research in many branches of mathematics and physics. Knowledge of basic representation theory of Lie groups as well as familiarity with semisimple Lie groups, symmetric spaces, and parabolic subgroups is required Nota de contenido: The Plancherel Theorem for a Reductive Symmetric Space -- The Paley—Wiener Theorem for a Reductive Symmetric Space -- The Plancherel Formula on Reductive Symmetric Spaces from the Point of View of the Schwartz Space En línea: http://dx.doi.org/10.1007/b138865 Link: https://biblioteca.cunef.edu/gestion/catalogo/index.php?lvl=notice_display&id=35183 Ejemplares
Signatura Medio Ubicación Sub-localización Sección Estado ningún ejemplar PermalinkPermalinkPermalinkPermalinkPermalink