Resultado de la búsqueda
367 búsqueda de la palabra clave 'Algebra'



Título : Algebraic Geometry and Commutative Algebra Tipo de documento: documento electrónico Autores: Siegfried Bosch ; SpringerLink (Online service) Editorial: London : Springer London Fecha de publicación: 2013 Otro editor: Imprint: Springer Colección: Universitext, ISSN 0172-5939 Número de páginas: X, 504 p Il.: online resource ISBN/ISSN/DL: 978-1-4471-4829-6 Idioma : Inglés (eng) Palabras clave: Mathematics Algebraic geometry Commutative algebra rings Geometry Rings and Algebras Clasificación: 51 Matemáticas Resumen: Algebraic geometry is a fascinating branch of mathematics that combines methods from both algebra and geometry. It transcends the limited scope of pure algebra by means of geometric construction principles. Moreover, Grothendieck’s schemes invented in the late 1950s allowed the application of algebraic-geometric methods in fields that formerly seemed to be far away from geometry (algebraic number theory, for example). The new techniques paved the way to spectacular progress such as the proof of Fermat’s Last Theorem by Wiles and Taylor. The scheme-theoretic approach to algebraic geometry is explained for non-experts whilst more advanced readers can use the book to broaden their view on the subject. A separate part studies the necessary prerequisites from commutative algebra. The book provides an accessible and self-contained introduction to algebraic geometry, up to an advanced level. Every chapter of the book is preceded by a motivating introduction with an informal discussion of the contents. Typical examples and an abundance of exercises illustrate each section. Therefore the book is an excellent solution for learning by yourself or for complementing knowledge that is already present. It can equally be used as a convenient source for courses and seminars or as supplemental literature Nota de contenido: Rings and Modules -- The Theory of Noetherian Rings -- Integral Extensions -- Extension of Coefficients and Descent -- Homological Methods: Ext and Tor -- Affine Schemes and Basic Constructions -- Techniques of Global Schemes -- Etale and Smooth Morphisms -- Projective Schemes and Proper Morphisms En línea: http://dx.doi.org/10.1007/978-1-4471-4829-6 Link: https://biblioteca.cunef.edu/gestion/catalogo/index.php?lvl=notice_display&id=32195 Algebraic Geometry and Commutative Algebra [documento electrónico] / Siegfried Bosch ; SpringerLink (Online service) . - London : Springer London : Imprint: Springer, 2013 . - X, 504 p : online resource. - (Universitext, ISSN 0172-5939) .
ISBN : 978-1-4471-4829-6
Idioma : Inglés (eng)
Palabras clave: Mathematics Algebraic geometry Commutative algebra rings Geometry Rings and Algebras Clasificación: 51 Matemáticas Resumen: Algebraic geometry is a fascinating branch of mathematics that combines methods from both algebra and geometry. It transcends the limited scope of pure algebra by means of geometric construction principles. Moreover, Grothendieck’s schemes invented in the late 1950s allowed the application of algebraic-geometric methods in fields that formerly seemed to be far away from geometry (algebraic number theory, for example). The new techniques paved the way to spectacular progress such as the proof of Fermat’s Last Theorem by Wiles and Taylor. The scheme-theoretic approach to algebraic geometry is explained for non-experts whilst more advanced readers can use the book to broaden their view on the subject. A separate part studies the necessary prerequisites from commutative algebra. The book provides an accessible and self-contained introduction to algebraic geometry, up to an advanced level. Every chapter of the book is preceded by a motivating introduction with an informal discussion of the contents. Typical examples and an abundance of exercises illustrate each section. Therefore the book is an excellent solution for learning by yourself or for complementing knowledge that is already present. It can equally be used as a convenient source for courses and seminars or as supplemental literature Nota de contenido: Rings and Modules -- The Theory of Noetherian Rings -- Integral Extensions -- Extension of Coefficients and Descent -- Homological Methods: Ext and Tor -- Affine Schemes and Basic Constructions -- Techniques of Global Schemes -- Etale and Smooth Morphisms -- Projective Schemes and Proper Morphisms En línea: http://dx.doi.org/10.1007/978-1-4471-4829-6 Link: https://biblioteca.cunef.edu/gestion/catalogo/index.php?lvl=notice_display&id=32195 Ejemplares
Signatura Medio Ubicación Sub-localización Sección Estado ningún ejemplar
Título : Linear Algebra and Geometry Tipo de documento: documento electrónico Autores: Shafarevich, Igor R ; SpringerLink (Online service) ; Alexey O. Remizov Editorial: Berlin, Heidelberg : Springer Berlin Heidelberg Fecha de publicación: 2013 Otro editor: Imprint: Springer Número de páginas: XXII, 526 p Il.: online resource ISBN/ISSN/DL: 978-3-642-30994-6 Idioma : Inglés (eng) Materias: Álgebra lineal Palabras clave: Mathematics Algebra Associative rings Rings (Algebra) Matrix theory Geometry Linear and Multilinear Algebras, Theory Algebras Clasificación: 512.64 Álgebra lineal y multilineal Resumen: This book on linear algebra and geometry is based on a course given by renowned academician I.R. Shafarevich at Moscow State University. The book begins with the theory of linear algebraic equations and the basic elements of matrix theory and continues with vector spaces, linear transformations, inner product spaces, and the theory of affine and projective spaces. The book also includes some subjects that are naturally related to linear algebra but are usually not covered in such courses: exterior algebras, non-Euclidean geometry, topological properties of projective spaces, theory of quadrics (in affine and projective spaces), decomposition of finite abelian groups, and finitely generated periodic modules (similar to Jordan normal forms of linear operators). Mathematical reasoning, theorems, and concepts are illustrated with numerous examples from various fields of mathematics, including differential equations and differential geometry, as well as from mechanics and physics Nota de contenido: Preface -- Preliminaries -- 1. Linear Equations -- 2. Matrices and Determinants -- 3. Vector Spaces -- 4. Linear Transformations of a Vector Space to Itself -- 5. Jordan Normal Form -- 6. Quadratic and Bilinear Forms -- 7. Euclidean Spaces -- 8. Affine Spaces -- 9. Projective Spaces -- 10. The Exterior Product and Exterior Algebras -- 11. Quadrics -- 12. Hyperbolic Geometry -- 13. Groups, Rings, and Modules -- 14. Elements of Representation Theory -- Historical Note -- References -- Index En línea: http://dx.doi.org/10.1007/978-3-642-30994-6 Link: https://biblioteca.cunef.edu/gestion/catalogo/index.php?lvl=notice_display&id=32508 Linear Algebra and Geometry [documento electrónico] / Shafarevich, Igor R ; SpringerLink (Online service) ; Alexey O. Remizov . - Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2013 . - XXII, 526 p : online resource.
ISBN : 978-3-642-30994-6
Idioma : Inglés (eng)
Materias: Álgebra lineal Palabras clave: Mathematics Algebra Associative rings Rings (Algebra) Matrix theory Geometry Linear and Multilinear Algebras, Theory Algebras Clasificación: 512.64 Álgebra lineal y multilineal Resumen: This book on linear algebra and geometry is based on a course given by renowned academician I.R. Shafarevich at Moscow State University. The book begins with the theory of linear algebraic equations and the basic elements of matrix theory and continues with vector spaces, linear transformations, inner product spaces, and the theory of affine and projective spaces. The book also includes some subjects that are naturally related to linear algebra but are usually not covered in such courses: exterior algebras, non-Euclidean geometry, topological properties of projective spaces, theory of quadrics (in affine and projective spaces), decomposition of finite abelian groups, and finitely generated periodic modules (similar to Jordan normal forms of linear operators). Mathematical reasoning, theorems, and concepts are illustrated with numerous examples from various fields of mathematics, including differential equations and differential geometry, as well as from mechanics and physics Nota de contenido: Preface -- Preliminaries -- 1. Linear Equations -- 2. Matrices and Determinants -- 3. Vector Spaces -- 4. Linear Transformations of a Vector Space to Itself -- 5. Jordan Normal Form -- 6. Quadratic and Bilinear Forms -- 7. Euclidean Spaces -- 8. Affine Spaces -- 9. Projective Spaces -- 10. The Exterior Product and Exterior Algebras -- 11. Quadrics -- 12. Hyperbolic Geometry -- 13. Groups, Rings, and Modules -- 14. Elements of Representation Theory -- Historical Note -- References -- Index En línea: http://dx.doi.org/10.1007/978-3-642-30994-6 Link: https://biblioteca.cunef.edu/gestion/catalogo/index.php?lvl=notice_display&id=32508 Ejemplares
Signatura Medio Ubicación Sub-localización Sección Estado ningún ejemplar
Título : Algebra : Fields with Structure, Algebras and Advanced Topics Tipo de documento: documento electrónico Autores: Falko Lorenz ; SpringerLink (Online service) Editorial: New York, NY : Springer New York Fecha de publicación: 2008 Número de páginas: X, 340 p Il.: online resource ISBN/ISSN/DL: 978-0-387-72488-1 Idioma : Inglés (eng) Palabras clave: Mathematics Algebra Commutative algebra rings Field theory (Physics) Matrix Number Rings and Algebras Theory Polynomials Linear Multilinear Algebras, Clasificación: 51 Matemáticas Resumen: The present textbook is a lively, problem-oriented and carefully written introduction to classical modern algebra. The author leads the reader through interesting subject matter, while assuming only the background provided by a first course in linear algebra. The first volume focuses on field extensions. Galois theory and its applications are treated more thoroughly than in most texts. It also covers basic applications to number theory, ring extensions and algebraic geometry. The main focus of the second volume is on additional structure of fields and related topics. Much material not usually covered in textbooks appears here, including real fields and quadratic forms, the Tsen rank of a field, the calculus of Witt vectors, the Schur group of a field, and local class field theory. Both volumes contain numerous exercises and can be used as a textbook for advanced undergraduate students. From Reviews of the German version: This is a charming textbook, introducing the reader to the classical parts of algebra. The exposition is admirably clear and lucidly written with only minimal prerequisites from linear algebra. The new concepts are, at least in the first part of the book, defined in the framework of the development of carefully selected problems. - Stefan Porubsky, Mathematical Reviews Nota de contenido: Ordered Fields and Real Fields -- Hilbert's Seventeenth Problem and the Real Nullstellensatz -- Orders and Quadratic Forms -- Absolute Values on Fields -- Residue Class Degree and Ramification Index -- Local Fields -- Witt Vectors -- The Tsen Rank of a Field -- Fundamentals of Modules -- Wedderburn Theory -- Crossed Products -- The Brauer Group of a Local Field -- Local Class Field Theory -- Semisimple Representations of Finite Groups -- The Schur Group of a Field En línea: http://dx.doi.org/10.1007/978-0-387-72488-1 Link: https://biblioteca.cunef.edu/gestion/catalogo/index.php?lvl=notice_display&id=34169 Algebra : Fields with Structure, Algebras and Advanced Topics [documento electrónico] / Falko Lorenz ; SpringerLink (Online service) . - New York, NY : Springer New York, 2008 . - X, 340 p : online resource.
ISBN : 978-0-387-72488-1
Idioma : Inglés (eng)
Palabras clave: Mathematics Algebra Commutative algebra rings Field theory (Physics) Matrix Number Rings and Algebras Theory Polynomials Linear Multilinear Algebras, Clasificación: 51 Matemáticas Resumen: The present textbook is a lively, problem-oriented and carefully written introduction to classical modern algebra. The author leads the reader through interesting subject matter, while assuming only the background provided by a first course in linear algebra. The first volume focuses on field extensions. Galois theory and its applications are treated more thoroughly than in most texts. It also covers basic applications to number theory, ring extensions and algebraic geometry. The main focus of the second volume is on additional structure of fields and related topics. Much material not usually covered in textbooks appears here, including real fields and quadratic forms, the Tsen rank of a field, the calculus of Witt vectors, the Schur group of a field, and local class field theory. Both volumes contain numerous exercises and can be used as a textbook for advanced undergraduate students. From Reviews of the German version: This is a charming textbook, introducing the reader to the classical parts of algebra. The exposition is admirably clear and lucidly written with only minimal prerequisites from linear algebra. The new concepts are, at least in the first part of the book, defined in the framework of the development of carefully selected problems. - Stefan Porubsky, Mathematical Reviews Nota de contenido: Ordered Fields and Real Fields -- Hilbert's Seventeenth Problem and the Real Nullstellensatz -- Orders and Quadratic Forms -- Absolute Values on Fields -- Residue Class Degree and Ramification Index -- Local Fields -- Witt Vectors -- The Tsen Rank of a Field -- Fundamentals of Modules -- Wedderburn Theory -- Crossed Products -- The Brauer Group of a Local Field -- Local Class Field Theory -- Semisimple Representations of Finite Groups -- The Schur Group of a Field En línea: http://dx.doi.org/10.1007/978-0-387-72488-1 Link: https://biblioteca.cunef.edu/gestion/catalogo/index.php?lvl=notice_display&id=34169 Ejemplares
Signatura Medio Ubicación Sub-localización Sección Estado ningún ejemplar
Título : The Local Structure of Algebraic K-Theory Tipo de documento: documento electrónico Autores: Bjørn Ian Dundas ; SpringerLink (Online service) ; Thomas G. Goodwillie ; Randy McCarthy Editorial: London : Springer London Fecha de publicación: 2012 Otro editor: Imprint: Springer Colección: Algebra and Applications, ISSN 1572-5553 num. 18 Número de páginas: XVI, 436 p Il.: online resource ISBN/ISSN/DL: 978-1-4471-4393-2 Idioma : Inglés (eng) Palabras clave: Mathematics Category theory (Mathematics) Homological algebra K-theory Algebraic topology K-Theory Topology Theory, Algebra Clasificación: 51 Matemáticas Resumen: Algebraic K-theory encodes important invariants for several mathematical disciplines, spanning from geometric topology and functional analysis to number theory and algebraic geometry. As is commonly encountered, this powerful mathematical object is very hard to calculate. Apart from Quillen's calculations of finite fields and Suslin's calculation of algebraically closed fields, few complete calculations were available before the discovery of homological invariants offered by motivic cohomology and topological cyclic homology. This book covers the connection between algebraic K-theory and Bökstedt, Hsiang and Madsen's topological cyclic homology and proves that the difference between the theories are ‘locally constant’. The usefulness of this theorem stems from being more accessible for calculations than K-theory, and hence a single calculation of K-theory can be used with homological calculations to obtain a host of ‘nearby’ calculations in K-theory. For instance, Quillen's calculation of the K-theory of finite fields gives rise to Hesselholt and Madsen's calculations for local fields, and Voevodsky's calculations for the integers give insight into the diffeomorphisms of manifolds. In addition to the proof of the full integral version of the local correspondence between K-theory and topological cyclic homology, the book provides an introduction to the necessary background in algebraic K-theory and highly structured homotopy theory; collecting all necessary tools into one common framework. It relies on simplicial techniques, and contains an appendix summarizing the methods widely used in the field. The book is intended for graduate students and scientists interested in algebraic K-theory, and presupposes a basic knowledge of algebraic topology Nota de contenido: Algebraic K-theory -- Gamma-spaces and S-algebras -- Reductions -- Topological Hochschild Homology -- The Trace K ? THH -- Topological Cyclic Homology -- The Comparison of K-theory and TC En línea: http://dx.doi.org/10.1007/978-1-4471-4393-2 Link: https://biblioteca.cunef.edu/gestion/catalogo/index.php?lvl=notice_display&id=32729 The Local Structure of Algebraic K-Theory [documento electrónico] / Bjørn Ian Dundas ; SpringerLink (Online service) ; Thomas G. Goodwillie ; Randy McCarthy . - London : Springer London : Imprint: Springer, 2012 . - XVI, 436 p : online resource. - (Algebra and Applications, ISSN 1572-5553; 18) .
ISBN : 978-1-4471-4393-2
Idioma : Inglés (eng)
Palabras clave: Mathematics Category theory (Mathematics) Homological algebra K-theory Algebraic topology K-Theory Topology Theory, Algebra Clasificación: 51 Matemáticas Resumen: Algebraic K-theory encodes important invariants for several mathematical disciplines, spanning from geometric topology and functional analysis to number theory and algebraic geometry. As is commonly encountered, this powerful mathematical object is very hard to calculate. Apart from Quillen's calculations of finite fields and Suslin's calculation of algebraically closed fields, few complete calculations were available before the discovery of homological invariants offered by motivic cohomology and topological cyclic homology. This book covers the connection between algebraic K-theory and Bökstedt, Hsiang and Madsen's topological cyclic homology and proves that the difference between the theories are ‘locally constant’. The usefulness of this theorem stems from being more accessible for calculations than K-theory, and hence a single calculation of K-theory can be used with homological calculations to obtain a host of ‘nearby’ calculations in K-theory. For instance, Quillen's calculation of the K-theory of finite fields gives rise to Hesselholt and Madsen's calculations for local fields, and Voevodsky's calculations for the integers give insight into the diffeomorphisms of manifolds. In addition to the proof of the full integral version of the local correspondence between K-theory and topological cyclic homology, the book provides an introduction to the necessary background in algebraic K-theory and highly structured homotopy theory; collecting all necessary tools into one common framework. It relies on simplicial techniques, and contains an appendix summarizing the methods widely used in the field. The book is intended for graduate students and scientists interested in algebraic K-theory, and presupposes a basic knowledge of algebraic topology Nota de contenido: Algebraic K-theory -- Gamma-spaces and S-algebras -- Reductions -- Topological Hochschild Homology -- The Trace K ? THH -- Topological Cyclic Homology -- The Comparison of K-theory and TC En línea: http://dx.doi.org/10.1007/978-1-4471-4393-2 Link: https://biblioteca.cunef.edu/gestion/catalogo/index.php?lvl=notice_display&id=32729 Ejemplares
Signatura Medio Ubicación Sub-localización Sección Estado ningún ejemplar Algebra, Arithmetic, and Geometry / SpringerLink (Online service) ; Yuri Tschinkel ; Yuri Zarhin (2009)
![]()
Título : Algebra, Arithmetic, and Geometry : Volume I: In Honor of Yu. I. Manin Tipo de documento: documento electrónico Autores: SpringerLink (Online service) ; Yuri Tschinkel ; Yuri Zarhin Editorial: Boston : Birkhäuser Boston Fecha de publicación: 2009 Colección: Progress in Mathematics num. 269 Número de páginas: XXXIV, 698 p. 41 illus Il.: online resource ISBN/ISSN/DL: 978-0-8176-4745-2 Idioma : Inglés (eng) Palabras clave: Mathematics Algebra Algebraic geometry Geometry Number theory Physics Theory Mathematical Methods in Clasificación: 51 Matemáticas Resumen: Algebra, Arithmetic, and Geometry: In Honor of Yu. I. Manin consists of invited expository and research articles on new developments arising from Manin’s outstanding contributions to mathematics. Contributors in the first volume include: K. Behrend, V.G. Berkovich, J.-B. Bost, P. Bressler, D. Calaque, J.F. Carlson, A. Chambert-Loir, E. Colombo, A. Connes, C. Consani, A. Da?browski, C. Deninger, I.V. Dolgachev, S.K. Donaldson, T. Ekedahl, A.-S. Elsenhans, B. Enriquez, P. Etingof, B. Fantechi, V.V. Fock, E.M. Friedlander, B. van Geemen, G. van der Geer, E. Getzler, A.B. Goncharov, V.A. Iskovskikh, J. Jahnel, M. Kapranov, E. Looijenga, M. Marcolli, B. Tsygan, E. Vasserot, M. Wodzicki Nota de contenido: Preface -- Introduction -- K. Behrend, B. Fantecci, Gerstenhaber and Batalin-Vilkovisky structures on Lagrangian intersections -- V. Berkovich, A non-Archimedean interpretation of the weight zero subspaces of limit mixed Hodge structures -- J.-B. Bost, A. Chambert-Loir, Analytic curves in algebraic varieties over number fields -- P. Bressler, M. Kapranov, B. Tsygan, E. Vasserot, Riemann-Roch for real varieties -- E. Colombo, B. van Geemen, E. Looijenga, Del Pezzo moduli via root systems -- A. Connes, C. Consani, M. Marcolli, The Weil proof and the geometry of the adeles class space -- A. Dabrowski, M. Wodzicki, Elliptic curves with large analytic III(E) -- C. Deninger, p-adic entropy and a p-adic Fuglede - Kadison determinant -- S. Donaldson, Lie algebra theory without algebra -- T. Ekedahl, G. van der Geer, Cycle classes of the E-O stratification on the moduli of abelian varieties -- A.-S. Elsenhans, J. Jahnel, Experiments with general cubic surfaces -- V.V. Fock, A. Goncharov, Cluster ensembles, quantization and the dilogarithm II: The intertwiner -- E. Getzler, Operads revisited -- M. Harris, Potential automorphy of odd-dimensional symmetric powers of elliptic curves, and applications -- D. Kaledin, Cyclic homology with coefficients -- M. Kapranov, Noncommutative geometry and path integrals -- N. Katz, Another look at the Dwork family -- R. Kaufmann, Graphs, strings and actions -- J. Kollár, M. Larsen, Quotients of Calabi-Yau varieties -- M. Kontsevich, Notes on motives in finite characteristic -- L. Merel, Symboles de Manin et valeurs de fonctions L.-M. Markl, A. Voronov, PROPped up graph cohomology -- S. Merkulov, Graph complexes with loops and wheels -- M. Movshev, Yang-Mills theory and a superquadric -- E. Mukhin, V. Tarasov, A. Varchenko, A generalization of the Capelli identity -- J. Nekovar, Hidden symmetries of the theory of complex multiplication -- V. Nikulin, Correspondences of a K3 surface with itself via moduli of sheaves, I.-O. Ogievetsky, V. Schechtman, Uneintersection des quadriques liée à la suite de Sturm -- F. Oort, Foliations in moduli spaces of abelian varieties and dimension of leaves -- D. Orlov, Derived categories of coherent sheaves and triangulated categories of singularities -- A. Panchishkin, K. Vankov, Rankin's lemma of higher genus and explicit formulas for Hecke operators -- A. Polishchuk, Massey products on cycles of projective lines and trigonometric solutions of the Yang-Baxter equations -- A. Vishik, Fields of $u$-invariant $2^r+1$ -- Y. Zarhin, Cubic surfaces and cubic threefolds, jacobians and intermediate jacobians -- Index En línea: http://dx.doi.org/10.1007/978-0-8176-4745-2 Link: https://biblioteca.cunef.edu/gestion/catalogo/index.php?lvl=notice_display&id=33942 Algebra, Arithmetic, and Geometry : Volume I: In Honor of Yu. I. Manin [documento electrónico] / SpringerLink (Online service) ; Yuri Tschinkel ; Yuri Zarhin . - Boston : Birkhäuser Boston, 2009 . - XXXIV, 698 p. 41 illus : online resource. - (Progress in Mathematics; 269) .
ISBN : 978-0-8176-4745-2
Idioma : Inglés (eng)
Palabras clave: Mathematics Algebra Algebraic geometry Geometry Number theory Physics Theory Mathematical Methods in Clasificación: 51 Matemáticas Resumen: Algebra, Arithmetic, and Geometry: In Honor of Yu. I. Manin consists of invited expository and research articles on new developments arising from Manin’s outstanding contributions to mathematics. Contributors in the first volume include: K. Behrend, V.G. Berkovich, J.-B. Bost, P. Bressler, D. Calaque, J.F. Carlson, A. Chambert-Loir, E. Colombo, A. Connes, C. Consani, A. Da?browski, C. Deninger, I.V. Dolgachev, S.K. Donaldson, T. Ekedahl, A.-S. Elsenhans, B. Enriquez, P. Etingof, B. Fantechi, V.V. Fock, E.M. Friedlander, B. van Geemen, G. van der Geer, E. Getzler, A.B. Goncharov, V.A. Iskovskikh, J. Jahnel, M. Kapranov, E. Looijenga, M. Marcolli, B. Tsygan, E. Vasserot, M. Wodzicki Nota de contenido: Preface -- Introduction -- K. Behrend, B. Fantecci, Gerstenhaber and Batalin-Vilkovisky structures on Lagrangian intersections -- V. Berkovich, A non-Archimedean interpretation of the weight zero subspaces of limit mixed Hodge structures -- J.-B. Bost, A. Chambert-Loir, Analytic curves in algebraic varieties over number fields -- P. Bressler, M. Kapranov, B. Tsygan, E. Vasserot, Riemann-Roch for real varieties -- E. Colombo, B. van Geemen, E. Looijenga, Del Pezzo moduli via root systems -- A. Connes, C. Consani, M. Marcolli, The Weil proof and the geometry of the adeles class space -- A. Dabrowski, M. Wodzicki, Elliptic curves with large analytic III(E) -- C. Deninger, p-adic entropy and a p-adic Fuglede - Kadison determinant -- S. Donaldson, Lie algebra theory without algebra -- T. Ekedahl, G. van der Geer, Cycle classes of the E-O stratification on the moduli of abelian varieties -- A.-S. Elsenhans, J. Jahnel, Experiments with general cubic surfaces -- V.V. Fock, A. Goncharov, Cluster ensembles, quantization and the dilogarithm II: The intertwiner -- E. Getzler, Operads revisited -- M. Harris, Potential automorphy of odd-dimensional symmetric powers of elliptic curves, and applications -- D. Kaledin, Cyclic homology with coefficients -- M. Kapranov, Noncommutative geometry and path integrals -- N. Katz, Another look at the Dwork family -- R. Kaufmann, Graphs, strings and actions -- J. Kollár, M. Larsen, Quotients of Calabi-Yau varieties -- M. Kontsevich, Notes on motives in finite characteristic -- L. Merel, Symboles de Manin et valeurs de fonctions L.-M. Markl, A. Voronov, PROPped up graph cohomology -- S. Merkulov, Graph complexes with loops and wheels -- M. Movshev, Yang-Mills theory and a superquadric -- E. Mukhin, V. Tarasov, A. Varchenko, A generalization of the Capelli identity -- J. Nekovar, Hidden symmetries of the theory of complex multiplication -- V. Nikulin, Correspondences of a K3 surface with itself via moduli of sheaves, I.-O. Ogievetsky, V. Schechtman, Uneintersection des quadriques liée à la suite de Sturm -- F. Oort, Foliations in moduli spaces of abelian varieties and dimension of leaves -- D. Orlov, Derived categories of coherent sheaves and triangulated categories of singularities -- A. Panchishkin, K. Vankov, Rankin's lemma of higher genus and explicit formulas for Hecke operators -- A. Polishchuk, Massey products on cycles of projective lines and trigonometric solutions of the Yang-Baxter equations -- A. Vishik, Fields of $u$-invariant $2^r+1$ -- Y. Zarhin, Cubic surfaces and cubic threefolds, jacobians and intermediate jacobians -- Index En línea: http://dx.doi.org/10.1007/978-0-8176-4745-2 Link: https://biblioteca.cunef.edu/gestion/catalogo/index.php?lvl=notice_display&id=33942 Ejemplares
Signatura Medio Ubicación Sub-localización Sección Estado ningún ejemplar Algebra, Arithmetic, and Geometry / SpringerLink (Online service) ; Yuri Tschinkel ; Yuri Zarhin (2009)
![]()
PermalinkPermalinkPermalinkPermalinkPermalink