Información de una colección
|
Documentos disponibles dentro de esta colección (5)



Cardiovascular Mathematics / SpringerLink (Online service) ; Luca Formaggia ; Alfio Quarteroni ; Alessandro Veneziani (2009)
![]()
Título : Cardiovascular Mathematics : Modeling and simulation of the circulatory system Tipo de documento: documento electrónico Autores: SpringerLink (Online service) ; Luca Formaggia ; Alfio Quarteroni ; Alessandro Veneziani Editorial: Milano : Springer Milan Fecha de publicación: 2009 Colección: MS&A, ISSN 2037-5255 num. 1 Número de páginas: XIII, 522 p Il.: online resource ISBN/ISSN/DL: 978-88-470-1152-6 Idioma : Inglés (eng) Palabras clave: Mathematics Cardiology Partial differential equations Applied mathematics Engineering Mathematical models Biomathematics Applications of and Computational Biology Physiological, Cellular Medical Topics Modeling Industrial Differential Equations Clasificación: 51 Matemáticas Resumen: Cardiovascular diseases have a major impact in Western countries. Mathematical models and numerical simulations can help the understanding of physiological and pathological processes, complementing the information provided to medical doctors by medical imaging and other non-invasive means, and opening the possibility of a better diagnosis and more in-depth surgical planning.This book offers a mathematically sound and up-to-date foundation to the training of researchers, and serves as a useful reference for the development of mathematical models and numerical simulation codes. It is structured into different chapters, written by recognized experts in the field, and however it features a common thread, with consistency of notation and expressions and systematic cross-referencing. Many fundamental issues are faced, such as: the mathematical representation of vascular geometries extracted from medical images, modelling blood rheology and the complex multilayer structure of the vascular tissue, and its possible pathologies, the mechanical and chemical interaction between blood and vascular walls; the different scales coupling local and systemic dynamics. All of these topics introduce challenging mathematical and numerical problems, demanding for advanced analysis and simulation techniques. This book is addressed to graduate students and researchers in the field of bioengineering, applied mathematics and medicine, wishing to engage themselves in the fascinating task of modeling how the cardiovascular system works Nota de contenido: Physiology and pathology of the cardiovascular system: A physical perspective -- Basic mathematical models and motivations -- The derivation of the equations for fluids and structure -- From image data to computational domains -- Geometry and flow -- Rheological models for blood -- Mathematical models of mass transfer in the vascular walls -- Analysis of coupled models for fluid-structure interaction of internal flows -- Algorithms for fluid-structure interaction problems -- Reduced models of the cardiovascular system -- Multiscale models of the vascular system -- Applications and test cases En línea: http://dx.doi.org/10.1007/978-88-470-1152-6 Link: https://biblioteca.cunef.edu/gestion/catalogo/index.php?lvl=notice_display&id=34129 Cardiovascular Mathematics : Modeling and simulation of the circulatory system [documento electrónico] / SpringerLink (Online service) ; Luca Formaggia ; Alfio Quarteroni ; Alessandro Veneziani . - Milano : Springer Milan, 2009 . - XIII, 522 p : online resource. - (MS&A, ISSN 2037-5255; 1) .
ISBN : 978-88-470-1152-6
Idioma : Inglés (eng)
Palabras clave: Mathematics Cardiology Partial differential equations Applied mathematics Engineering Mathematical models Biomathematics Applications of and Computational Biology Physiological, Cellular Medical Topics Modeling Industrial Differential Equations Clasificación: 51 Matemáticas Resumen: Cardiovascular diseases have a major impact in Western countries. Mathematical models and numerical simulations can help the understanding of physiological and pathological processes, complementing the information provided to medical doctors by medical imaging and other non-invasive means, and opening the possibility of a better diagnosis and more in-depth surgical planning.This book offers a mathematically sound and up-to-date foundation to the training of researchers, and serves as a useful reference for the development of mathematical models and numerical simulation codes. It is structured into different chapters, written by recognized experts in the field, and however it features a common thread, with consistency of notation and expressions and systematic cross-referencing. Many fundamental issues are faced, such as: the mathematical representation of vascular geometries extracted from medical images, modelling blood rheology and the complex multilayer structure of the vascular tissue, and its possible pathologies, the mechanical and chemical interaction between blood and vascular walls; the different scales coupling local and systemic dynamics. All of these topics introduce challenging mathematical and numerical problems, demanding for advanced analysis and simulation techniques. This book is addressed to graduate students and researchers in the field of bioengineering, applied mathematics and medicine, wishing to engage themselves in the fascinating task of modeling how the cardiovascular system works Nota de contenido: Physiology and pathology of the cardiovascular system: A physical perspective -- Basic mathematical models and motivations -- The derivation of the equations for fluids and structure -- From image data to computational domains -- Geometry and flow -- Rheological models for blood -- Mathematical models of mass transfer in the vascular walls -- Analysis of coupled models for fluid-structure interaction of internal flows -- Algorithms for fluid-structure interaction problems -- Reduced models of the cardiovascular system -- Multiscale models of the vascular system -- Applications and test cases En línea: http://dx.doi.org/10.1007/978-88-470-1152-6 Link: https://biblioteca.cunef.edu/gestion/catalogo/index.php?lvl=notice_display&id=34129 Ejemplares
Signatura Medio Ubicación Sub-localización Sección Estado ningún ejemplar
Título : Eddy Current Approximation of Maxwell Equations : Theory, algorithms and applications Tipo de documento: documento electrónico Autores: Ana Alonso Rodríguez ; SpringerLink (Online service) ; Alberto Valli Editorial: Milano : Springer Milan Fecha de publicación: 2010 Colección: MS&A, ISSN 2037-5255 num. 4 Número de páginas: XIII, 347 p Il.: online resource ISBN/ISSN/DL: 978-88-470-1506-7 Idioma : Inglés (eng) Palabras clave: Mathematics Mathematical analysis Analysis (Mathematics) Partial differential equations Computer mathematics models Computational and Numerical Differential Equations Modeling Industrial Mathematics, general Clasificación: 51 Matemáticas Resumen: This book deals with the mathematical analysis and the numerical approximation of time-harmonic eddy current problems. It is self-contained and suitable for mathematicians and engineers working in the field, and also accessible for beginners. Depending on the choice of the physical unknowns, these problems are formulated in different variational ways, with specific attention to the topology of the computational domain. Finite elements of nodal or edge type are used for numerical approximation, and a complete analysis of convergence is performed. A specific feature of the book is the emphasis given to saddle-point formulations in terms of the magnetic and electric fields. New results for voltage or current intensity excitation problems are also presented Nota de contenido: Setting the problem -- A mathematical justification of the eddy current model -- Existence and uniqueness of the solution -- Hybrid formulations for the electric and magnetic fields -- Formulations via scalar potentials -- Formulations via vector potentials -- Coupled FEM-BEM approaches -- Voltage and current intensity excitation -- Selected applications En línea: http://dx.doi.org/10.1007/978-88-470-1506-7 Link: https://biblioteca.cunef.edu/gestion/catalogo/index.php?lvl=notice_display&id=33799 Eddy Current Approximation of Maxwell Equations : Theory, algorithms and applications [documento electrónico] / Ana Alonso Rodríguez ; SpringerLink (Online service) ; Alberto Valli . - Milano : Springer Milan, 2010 . - XIII, 347 p : online resource. - (MS&A, ISSN 2037-5255; 4) .
ISBN : 978-88-470-1506-7
Idioma : Inglés (eng)
Palabras clave: Mathematics Mathematical analysis Analysis (Mathematics) Partial differential equations Computer mathematics models Computational and Numerical Differential Equations Modeling Industrial Mathematics, general Clasificación: 51 Matemáticas Resumen: This book deals with the mathematical analysis and the numerical approximation of time-harmonic eddy current problems. It is self-contained and suitable for mathematicians and engineers working in the field, and also accessible for beginners. Depending on the choice of the physical unknowns, these problems are formulated in different variational ways, with specific attention to the topology of the computational domain. Finite elements of nodal or edge type are used for numerical approximation, and a complete analysis of convergence is performed. A specific feature of the book is the emphasis given to saddle-point formulations in terms of the magnetic and electric fields. New results for voltage or current intensity excitation problems are also presented Nota de contenido: Setting the problem -- A mathematical justification of the eddy current model -- Existence and uniqueness of the solution -- Hybrid formulations for the electric and magnetic fields -- Formulations via scalar potentials -- Formulations via vector potentials -- Coupled FEM-BEM approaches -- Voltage and current intensity excitation -- Selected applications En línea: http://dx.doi.org/10.1007/978-88-470-1506-7 Link: https://biblioteca.cunef.edu/gestion/catalogo/index.php?lvl=notice_display&id=33799 Ejemplares
Signatura Medio Ubicación Sub-localización Sección Estado ningún ejemplar
Título : Introduction to Modeling Biological Cellular Control Systems Tipo de documento: documento electrónico Autores: Weijiu Liu ; SpringerLink (Online service) Editorial: Milano : Springer Milan Fecha de publicación: 2012 Colección: MS&A, ISSN 2037-5255 Número de páginas: XII, 272 p Il.: online resource ISBN/ISSN/DL: 978-88-470-2490-8 Idioma : Inglés (eng) Palabras clave: Mathematics Chemometrics Systems biology Cell Differential equations System theory Biomathematics Mathematical and Computational Biology Math. Applications in Chemistry Theory, Control Ordinary Equations Clasificación: 51 Matemáticas Resumen: This textbook contains the essential knowledge in modeling, simulation, analysis, and applications in dealing with biological cellular control systems. In particular, the book shows how to use the law of mass balance and the law of mass action to derive an enzyme kinetic model - the Michaelis-Menten function or the Hill function, how to use a current-voltage relation, Nernst potential equilibrium equation, and Hodgkin and Huxley's models to model an ionic channel or pump, and how to use the law of mass balance to integrate these enzyme or channel models into a complete feedback control system. The book also illustrates how to use data to estimate parameters in a model, how to use MATLAB to solve a model numerically, how to do computer simulations, and how to provide model predictions. Furthermore, the book demonstrates how to conduct a stability and sensitivity analysis on a model Nota de contenido: Enzyme Kinetics -- Preliminary Systems Theory -- Control of Blood Glucose -- Control of Calcium in Yeast Cells -- Kinetics of Ion Pumps and Channels -- Store-Operated Calcium Entry -- Control of Mitochondrial Calcium -- Control of Phosphoinositide Synthesis -- PreliminaryMATLAB En línea: http://dx.doi.org/10.1007/978-88-470-2490-8 Link: https://biblioteca.cunef.edu/gestion/catalogo/index.php?lvl=notice_display&id=33042 Introduction to Modeling Biological Cellular Control Systems [documento electrónico] / Weijiu Liu ; SpringerLink (Online service) . - Milano : Springer Milan, 2012 . - XII, 272 p : online resource. - (MS&A, ISSN 2037-5255) .
ISBN : 978-88-470-2490-8
Idioma : Inglés (eng)
Palabras clave: Mathematics Chemometrics Systems biology Cell Differential equations System theory Biomathematics Mathematical and Computational Biology Math. Applications in Chemistry Theory, Control Ordinary Equations Clasificación: 51 Matemáticas Resumen: This textbook contains the essential knowledge in modeling, simulation, analysis, and applications in dealing with biological cellular control systems. In particular, the book shows how to use the law of mass balance and the law of mass action to derive an enzyme kinetic model - the Michaelis-Menten function or the Hill function, how to use a current-voltage relation, Nernst potential equilibrium equation, and Hodgkin and Huxley's models to model an ionic channel or pump, and how to use the law of mass balance to integrate these enzyme or channel models into a complete feedback control system. The book also illustrates how to use data to estimate parameters in a model, how to use MATLAB to solve a model numerically, how to do computer simulations, and how to provide model predictions. Furthermore, the book demonstrates how to conduct a stability and sensitivity analysis on a model Nota de contenido: Enzyme Kinetics -- Preliminary Systems Theory -- Control of Blood Glucose -- Control of Calcium in Yeast Cells -- Kinetics of Ion Pumps and Channels -- Store-Operated Calcium Entry -- Control of Mitochondrial Calcium -- Control of Phosphoinositide Synthesis -- PreliminaryMATLAB En línea: http://dx.doi.org/10.1007/978-88-470-2490-8 Link: https://biblioteca.cunef.edu/gestion/catalogo/index.php?lvl=notice_display&id=33042 Ejemplares
Signatura Medio Ubicación Sub-localización Sección Estado ningún ejemplar
Título : Mathknow : Mathematics, Applied Sciences and Real Life Tipo de documento: documento electrónico Autores: SpringerLink (Online service) ; Michele Emmer ; Alfio Quarteroni Editorial: Milano : Springer Milan Fecha de publicación: 2009 Colección: MS&A, ISSN 2037-5255 num. 3 Número de páginas: XI, 264 p Il.: online resource ISBN/ISSN/DL: 978-88-470-1122-9 Idioma : Inglés (eng) Palabras clave: Mathematics Architecture Applied mathematics Engineering Computer Mathematical models Applications of Mathematics, general Modeling and Industrial Computational Numerical Analysis Science Architecture, Clasificación: 51 Matemáticas Resumen: Mathematics forms bridges between knowledge, tradition, and contemporary life. The continuous development and growth of its many branches, both classical and modern, permeates and fertilizes all aspects of applied science and technology, and so has a vital impact on our modern society. The book will focus on these aspects and will benefit from the contribution of several world-famous scientists from mathematics and related sciences Nota de contenido: The misuse of mathematics -- Mathematics and literature -- Applied partial differential equations: visualization by photography -- The spirit of algebra -- Theory and applications of Raptor codes -- Other geometries in architecture: bubbles, knots and minimal surfaces -- Soft matter: mathematical models of smart materials -- Soap films and soap bubbles: from Plateau to the olympic swimming pool in Beijing -- Games suggest how to define rational behavior. Surprising aspects of interactive decision theory -- Archaeoastronomy at Giza: the ancient Egyptians’ mathematical astronomy in action -- Mathematics and food: a tasty binomium -- Detecting structural complexity: from visiometrics to genomics and brain research -- Recreative mathematics: soldiers, eggs and a pirate crew -- Mathematical magic and society -- Little Tom Thumb among cells: seeking the cues of life -- Adam’s Pears -- Mathematics enters the picture -- Multi-physics models for bio-hybrid device simulation -- Stress detection: a sonic approach -- Vulnerability to climate change: mathematics as a language to clarify concepts En línea: http://dx.doi.org/10.1007/978-88-470-1122-9 Link: https://biblioteca.cunef.edu/gestion/catalogo/index.php?lvl=notice_display&id=34128 Mathknow : Mathematics, Applied Sciences and Real Life [documento electrónico] / SpringerLink (Online service) ; Michele Emmer ; Alfio Quarteroni . - Milano : Springer Milan, 2009 . - XI, 264 p : online resource. - (MS&A, ISSN 2037-5255; 3) .
ISBN : 978-88-470-1122-9
Idioma : Inglés (eng)
Palabras clave: Mathematics Architecture Applied mathematics Engineering Computer Mathematical models Applications of Mathematics, general Modeling and Industrial Computational Numerical Analysis Science Architecture, Clasificación: 51 Matemáticas Resumen: Mathematics forms bridges between knowledge, tradition, and contemporary life. The continuous development and growth of its many branches, both classical and modern, permeates and fertilizes all aspects of applied science and technology, and so has a vital impact on our modern society. The book will focus on these aspects and will benefit from the contribution of several world-famous scientists from mathematics and related sciences Nota de contenido: The misuse of mathematics -- Mathematics and literature -- Applied partial differential equations: visualization by photography -- The spirit of algebra -- Theory and applications of Raptor codes -- Other geometries in architecture: bubbles, knots and minimal surfaces -- Soft matter: mathematical models of smart materials -- Soap films and soap bubbles: from Plateau to the olympic swimming pool in Beijing -- Games suggest how to define rational behavior. Surprising aspects of interactive decision theory -- Archaeoastronomy at Giza: the ancient Egyptians’ mathematical astronomy in action -- Mathematics and food: a tasty binomium -- Detecting structural complexity: from visiometrics to genomics and brain research -- Recreative mathematics: soldiers, eggs and a pirate crew -- Mathematical magic and society -- Little Tom Thumb among cells: seeking the cues of life -- Adam’s Pears -- Mathematics enters the picture -- Multi-physics models for bio-hybrid device simulation -- Stress detection: a sonic approach -- Vulnerability to climate change: mathematics as a language to clarify concepts En línea: http://dx.doi.org/10.1007/978-88-470-1122-9 Link: https://biblioteca.cunef.edu/gestion/catalogo/index.php?lvl=notice_display&id=34128 Ejemplares
Signatura Medio Ubicación Sub-localización Sección Estado ningún ejemplar
Título : Numerical Models for Differential Problems Tipo de documento: documento electrónico Autores: Alfio Quarteroni ; SpringerLink (Online service) Editorial: Milano : Springer Milan Fecha de publicación: 2009 Colección: MS&A, ISSN 2037-5255 num. 2 Número de páginas: XVI, 601 p Il.: online resource ISBN/ISSN/DL: 978-88-470-1071-0 Idioma : Inglés (eng) Palabras clave: Mathematics Mathematical analysis Analysis (Mathematics) Applied mathematics Engineering Computer Numerical models Mathematics, general Modeling and Industrial Applications of Computational Clasificación: 51 Matemáticas Resumen: In this text, we introduce the basic concepts for the numerical modelling of partial differential equations. We consider the classical elliptic, parabolic and hyperbolic linear equations, but also the diffusion, transport, and Navier-Stokes equations, as well as equations representing conservation laws, saddle-point problems and optimal control problems. Furthermore, we provide numerous physical examples which underline such equations. We then analyze numerical solution methods based on finite elements, finite differences, finite volumes, spectral methods and domain decomposition methods, and reduced basis methods. In particular, we discuss the algorithmic and computer implementation aspects and provide a number of easy-to-use programs. The text does not require any previous advanced mathematical knowledge of partial differential equations: the absolutely essential concepts are reported in a preliminary chapter. It is therefore suitable for students of bachelor and master courses in scientific disciplines, and recommendable to those researchers in the academic and extra-academic domain who want to approach this interesting branch of applied mathematics Nota de contenido: A brief survey on partial differential equations -- Elements of functional analysis -- Elliptic equations -- The Galerkin finite element method for elliptic problems -- Parabolic equations -- Generation of 1D and 2D grids -- Algorithms for the solution of linear systems -- Elements of finite element programming -- The finite volume method -- Spectral methods -- Diffusion-transport-reaction equations -- Finite differences for hyperbolic equations -- Finite elements and spectral methods for hyperbolic equations -- Nonlinear hyperbolic problems -- Navier-Stokes equations -- Optimal control of partial differential equations -- Domain decomposition methods -- Reduced basis approximation for parametrized partial differential equations En línea: http://dx.doi.org/10.1007/978-88-470-1071-0 Link: https://biblioteca.cunef.edu/gestion/catalogo/index.php?lvl=notice_display&id=34123 Numerical Models for Differential Problems [documento electrónico] / Alfio Quarteroni ; SpringerLink (Online service) . - Milano : Springer Milan, 2009 . - XVI, 601 p : online resource. - (MS&A, ISSN 2037-5255; 2) .
ISBN : 978-88-470-1071-0
Idioma : Inglés (eng)
Palabras clave: Mathematics Mathematical analysis Analysis (Mathematics) Applied mathematics Engineering Computer Numerical models Mathematics, general Modeling and Industrial Applications of Computational Clasificación: 51 Matemáticas Resumen: In this text, we introduce the basic concepts for the numerical modelling of partial differential equations. We consider the classical elliptic, parabolic and hyperbolic linear equations, but also the diffusion, transport, and Navier-Stokes equations, as well as equations representing conservation laws, saddle-point problems and optimal control problems. Furthermore, we provide numerous physical examples which underline such equations. We then analyze numerical solution methods based on finite elements, finite differences, finite volumes, spectral methods and domain decomposition methods, and reduced basis methods. In particular, we discuss the algorithmic and computer implementation aspects and provide a number of easy-to-use programs. The text does not require any previous advanced mathematical knowledge of partial differential equations: the absolutely essential concepts are reported in a preliminary chapter. It is therefore suitable for students of bachelor and master courses in scientific disciplines, and recommendable to those researchers in the academic and extra-academic domain who want to approach this interesting branch of applied mathematics Nota de contenido: A brief survey on partial differential equations -- Elements of functional analysis -- Elliptic equations -- The Galerkin finite element method for elliptic problems -- Parabolic equations -- Generation of 1D and 2D grids -- Algorithms for the solution of linear systems -- Elements of finite element programming -- The finite volume method -- Spectral methods -- Diffusion-transport-reaction equations -- Finite differences for hyperbolic equations -- Finite elements and spectral methods for hyperbolic equations -- Nonlinear hyperbolic problems -- Navier-Stokes equations -- Optimal control of partial differential equations -- Domain decomposition methods -- Reduced basis approximation for parametrized partial differential equations En línea: http://dx.doi.org/10.1007/978-88-470-1071-0 Link: https://biblioteca.cunef.edu/gestion/catalogo/index.php?lvl=notice_display&id=34123 Ejemplares
Signatura Medio Ubicación Sub-localización Sección Estado ningún ejemplar