Información de una colección
|
Documentos disponibles dentro de esta colección (5)



Título : Compressible Navier-Stokes Equations : Theory and Shape Optimization Tipo de documento: documento electrónico Autores: Plotnikov, Pavel ; SpringerLink (Online service) ; Sokolowski, Jan Editorial: Basel : Springer Basel Fecha de publicación: 2012 Otro editor: Imprint: Birkhäuser Colección: Monografie Matematyczne num. 73 Número de páginas: XVI, 464 p Il.: online resource ISBN/ISSN/DL: 978-3-0348-0367-0 Idioma : Inglés (eng) Palabras clave: Mathematics Partial differential equations Mathematical physics Differential Equations Physics Clasificación: 51 Matemáticas Resumen: The book presents the modern state of the art in the mathematical theory of compressible Navier-Stokes equations, with particular emphasis on applications to aerodynamics. The topics covered include: modeling of compressible viscous flows; modern mathematical theory of nonhomogeneous boundary value problems for viscous gas dynamics equations; applications to optimal shape design in aerodynamics; kinetic theory for equations with oscillating data; new approach to the boundary value problems for transport equations. The monograph offers a comprehensive and self-contained introduction to recent mathematical tools designed to handle the problems arising in the theory Nota de contenido: Preface -- Introduction -- 1 Preliminaries -- 2 Physical background -- 3 Problem formulation -- 4 Basic statements -- 5 Nonstationary case. Existence theory -- 6 Pressure estimate -- 7 Kinetic theory. Fast density oscillations -- 8 Domain convergence -- 9 Flow around an obstacle. Domain dependence -- 10 Existence theory in nonsmooth domains -- 11 Sensitivity analysis. Shape gradient of the drag functional -- 12 Transport equations -- 13 Appendix -- Bibliography -- Notation -- Index En línea: http://dx.doi.org/10.1007/978-3-0348-0367-0 Link: https://biblioteca.cunef.edu/gestion/catalogo/index.php?lvl=notice_display&id=32880 Compressible Navier-Stokes Equations : Theory and Shape Optimization [documento electrónico] / Plotnikov, Pavel ; SpringerLink (Online service) ; Sokolowski, Jan . - Basel : Springer Basel : Imprint: Birkhäuser, 2012 . - XVI, 464 p : online resource. - (Monografie Matematyczne; 73) .
ISBN : 978-3-0348-0367-0
Idioma : Inglés (eng)
Palabras clave: Mathematics Partial differential equations Mathematical physics Differential Equations Physics Clasificación: 51 Matemáticas Resumen: The book presents the modern state of the art in the mathematical theory of compressible Navier-Stokes equations, with particular emphasis on applications to aerodynamics. The topics covered include: modeling of compressible viscous flows; modern mathematical theory of nonhomogeneous boundary value problems for viscous gas dynamics equations; applications to optimal shape design in aerodynamics; kinetic theory for equations with oscillating data; new approach to the boundary value problems for transport equations. The monograph offers a comprehensive and self-contained introduction to recent mathematical tools designed to handle the problems arising in the theory Nota de contenido: Preface -- Introduction -- 1 Preliminaries -- 2 Physical background -- 3 Problem formulation -- 4 Basic statements -- 5 Nonstationary case. Existence theory -- 6 Pressure estimate -- 7 Kinetic theory. Fast density oscillations -- 8 Domain convergence -- 9 Flow around an obstacle. Domain dependence -- 10 Existence theory in nonsmooth domains -- 11 Sensitivity analysis. Shape gradient of the drag functional -- 12 Transport equations -- 13 Appendix -- Bibliography -- Notation -- Index En línea: http://dx.doi.org/10.1007/978-3-0348-0367-0 Link: https://biblioteca.cunef.edu/gestion/catalogo/index.php?lvl=notice_display&id=32880 Ejemplares
Signatura Medio Ubicación Sub-localización Sección Estado ningún ejemplar Extremal Problems in Interpolation Theory, Whitney-Besicovitch Coverings, and Singular Integrals / Sergey Kislyakov (2013)
![]()
Título : Extremal Problems in Interpolation Theory, Whitney-Besicovitch Coverings, and Singular Integrals Tipo de documento: documento electrónico Autores: Sergey Kislyakov ; SpringerLink (Online service) ; Natan Kruglyak Editorial: Basel : Springer Basel Fecha de publicación: 2013 Otro editor: Imprint: Birkhäuser Colección: Monografie Matematyczne num. 74 Número de páginas: X, 322 p Il.: online resource ISBN/ISSN/DL: 978-3-0348-0469-1 Idioma : Inglés (eng) Palabras clave: Mathematics Approximation theory Functional analysis Functions of real variables Real Approximations and Expansions Analysis Clasificación: 51 Matemáticas Resumen: In this book we suggest a unified method of constructing near-minimizers for certain important functionals arising in approximation, harmonic analysis and ill-posed problems and most widely used in interpolation theory. The constructions are based on far-reaching refinements of the classical Calderón–Zygmund decomposition. These new Calderón–Zygmund decompositions in turn are produced with the help of new covering theorems that combine many remarkable features of classical results established by Besicovitch, Whitney and Wiener. In many cases the minimizers constructed in the book are stable (i.e., remain near-minimizers) under the action of Calderón–Zygmund singular integral operators. The book is divided into two parts. While the new method is presented in great detail in the second part, the first is mainly devoted to the prerequisites needed for a self-contained presentation of the main topic. There we discuss the classical covering results mentioned above, various spectacular applications of the classical Calderón–Zygmund decompositions, and the relationship of all this to real interpolation. It also serves as a quick introduction to such important topics as spaces of smooth functions or singular integrals Nota de contenido: Preface -- Introduction -- Definitions, notation, and some standard facts -- Part 1. Background -- Chapter 1. Classical Calderón–Zygmund decomposition and real interpolation -- Chapter 2. Singular integrals -- Chapter 3. Classical covering theorems -- Chapter 4. Spaces of smooth functions and operators on them -- Chapter 5. Some topics in interpolation -- Chapter 6. Regularization for Banach spaces -- Chapter 7. Stability for analytic Hardy spaces -- Part 2. Advanced theory -- Chapter 8. Controlled coverings -- Chapter 9. Construction of near-minimizers -- Chapter 10. Stability of near-minimizers -- Chapter 11. The omitted case of a limit exponent -- Chapter A. Appendix. Near-minimizers for Brudnyi and Triebel–Lizorkin spaces -- Notes and remarks -- Bibliography -- Index En línea: http://dx.doi.org/10.1007/978-3-0348-0469-1 Link: https://biblioteca.cunef.edu/gestion/catalogo/index.php?lvl=notice_display&id=32418 Extremal Problems in Interpolation Theory, Whitney-Besicovitch Coverings, and Singular Integrals [documento electrónico] / Sergey Kislyakov ; SpringerLink (Online service) ; Natan Kruglyak . - Basel : Springer Basel : Imprint: Birkhäuser, 2013 . - X, 322 p : online resource. - (Monografie Matematyczne; 74) .
ISBN : 978-3-0348-0469-1
Idioma : Inglés (eng)
Palabras clave: Mathematics Approximation theory Functional analysis Functions of real variables Real Approximations and Expansions Analysis Clasificación: 51 Matemáticas Resumen: In this book we suggest a unified method of constructing near-minimizers for certain important functionals arising in approximation, harmonic analysis and ill-posed problems and most widely used in interpolation theory. The constructions are based on far-reaching refinements of the classical Calderón–Zygmund decomposition. These new Calderón–Zygmund decompositions in turn are produced with the help of new covering theorems that combine many remarkable features of classical results established by Besicovitch, Whitney and Wiener. In many cases the minimizers constructed in the book are stable (i.e., remain near-minimizers) under the action of Calderón–Zygmund singular integral operators. The book is divided into two parts. While the new method is presented in great detail in the second part, the first is mainly devoted to the prerequisites needed for a self-contained presentation of the main topic. There we discuss the classical covering results mentioned above, various spectacular applications of the classical Calderón–Zygmund decompositions, and the relationship of all this to real interpolation. It also serves as a quick introduction to such important topics as spaces of smooth functions or singular integrals Nota de contenido: Preface -- Introduction -- Definitions, notation, and some standard facts -- Part 1. Background -- Chapter 1. Classical Calderón–Zygmund decomposition and real interpolation -- Chapter 2. Singular integrals -- Chapter 3. Classical covering theorems -- Chapter 4. Spaces of smooth functions and operators on them -- Chapter 5. Some topics in interpolation -- Chapter 6. Regularization for Banach spaces -- Chapter 7. Stability for analytic Hardy spaces -- Part 2. Advanced theory -- Chapter 8. Controlled coverings -- Chapter 9. Construction of near-minimizers -- Chapter 10. Stability of near-minimizers -- Chapter 11. The omitted case of a limit exponent -- Chapter A. Appendix. Near-minimizers for Brudnyi and Triebel–Lizorkin spaces -- Notes and remarks -- Bibliography -- Index En línea: http://dx.doi.org/10.1007/978-3-0348-0469-1 Link: https://biblioteca.cunef.edu/gestion/catalogo/index.php?lvl=notice_display&id=32418 Ejemplares
Signatura Medio Ubicación Sub-localización Sección Estado ningún ejemplar
Título : Homological Algebra of Semimodules and Semicontramodules : Semi-infinite Homological Algebra of Associative Algebraic Structures Tipo de documento: documento electrónico Autores: Positselski, Leonid ; SpringerLink (Online service) Editorial: Basel : Springer Basel Fecha de publicación: 2010 Colección: Monografie Matematyczne num. 70 Número de páginas: XXIV, 352 p Il.: online resource ISBN/ISSN/DL: 978-3-0346-0436-9 Idioma : Inglés (eng) Palabras clave: Mathematics Category theory (Mathematics) Homological algebra Global analysis Manifolds Differential geometry Theory, Algebra Analysis and on Geometry Clasificación: 51 Matemáticas Resumen: This monograph deals with semi-infinite homological algebra. Intended as the definitive treatment of the subject of semi-infinite homology and cohomology of associative algebraic structures, it also contains material on the semi-infinite (co)homology of Lie algebras and topological groups, the derived comodule-contramodule correspondence, its application to the duality between representations of infinite-dimensional Lie algebras with complementary central charges, and relative non-homogeneous Koszul duality. The book explains with great clarity what the associative version of semi-infinite cohomology is, why it exists, and for what kind of objects it is defined. Semialgebras, contramodules, exotic derived categories, Tate Lie algebras, algebraic Harish-Chandra pairs, and locally compact totally disconnected topological groups all interplay in the theories developed in this monograph. Contramodules, introduced originally by Eilenberg and Moore in the 1960s but almost forgotten for four decades, are featured prominently in this book, with many versions of them introduced and discussed. Rich in new ideas on homological algebra and the theory of corings and their analogues, this book also makes a contribution to the foundational aspects of representation theory. In particular, it will be a valuable addition to the algebraic literature available to mathematical physicists Nota de contenido: Preface -- Introduction -- 0 Preliminaries and Summary -- 1 Semialgebras and Semitensor Product -- 2 Derived Functor SemiTor -- 3 Semicontramodules and Semihomomorphisms -- 4 Derived Functor SemiExt -- 5 Comodule-Contramodule Correspondence -- 6 Semimodule-Semicontramodule Correspondence -- 7 Functoriality in the Coring -- 8 Functoriality in the Semialgebra -- 9 Closed Model Category Structures -- 10 A Construction of Semialgebras -- 11 Relative Nonhomogeneous Koszul Duality -- Appendix A Contramodules over Coalgebras over Fields -- Appendix B Comparison with Arkhipov's Ext^{\infty/2+*} and Sevostyanov's Tor_{\infty/2+*} -- Appendix C Semialgebras Associated to Harish-Chandra Pairs -- Appendix D Tate Harish-Chandra Pairs and Tate Lie Algebras -- Appendix E Groups with Open Profinite Subgroups -- Appendix F Algebraic Groupoids with Closed Subgroupoids -- Bibliography -- Index En línea: http://dx.doi.org/10.1007/978-3-0346-0436-9 Link: https://biblioteca.cunef.edu/gestion/catalogo/index.php?lvl=notice_display&id=33681 Homological Algebra of Semimodules and Semicontramodules : Semi-infinite Homological Algebra of Associative Algebraic Structures [documento electrónico] / Positselski, Leonid ; SpringerLink (Online service) . - Basel : Springer Basel, 2010 . - XXIV, 352 p : online resource. - (Monografie Matematyczne; 70) .
ISBN : 978-3-0346-0436-9
Idioma : Inglés (eng)
Palabras clave: Mathematics Category theory (Mathematics) Homological algebra Global analysis Manifolds Differential geometry Theory, Algebra Analysis and on Geometry Clasificación: 51 Matemáticas Resumen: This monograph deals with semi-infinite homological algebra. Intended as the definitive treatment of the subject of semi-infinite homology and cohomology of associative algebraic structures, it also contains material on the semi-infinite (co)homology of Lie algebras and topological groups, the derived comodule-contramodule correspondence, its application to the duality between representations of infinite-dimensional Lie algebras with complementary central charges, and relative non-homogeneous Koszul duality. The book explains with great clarity what the associative version of semi-infinite cohomology is, why it exists, and for what kind of objects it is defined. Semialgebras, contramodules, exotic derived categories, Tate Lie algebras, algebraic Harish-Chandra pairs, and locally compact totally disconnected topological groups all interplay in the theories developed in this monograph. Contramodules, introduced originally by Eilenberg and Moore in the 1960s but almost forgotten for four decades, are featured prominently in this book, with many versions of them introduced and discussed. Rich in new ideas on homological algebra and the theory of corings and their analogues, this book also makes a contribution to the foundational aspects of representation theory. In particular, it will be a valuable addition to the algebraic literature available to mathematical physicists Nota de contenido: Preface -- Introduction -- 0 Preliminaries and Summary -- 1 Semialgebras and Semitensor Product -- 2 Derived Functor SemiTor -- 3 Semicontramodules and Semihomomorphisms -- 4 Derived Functor SemiExt -- 5 Comodule-Contramodule Correspondence -- 6 Semimodule-Semicontramodule Correspondence -- 7 Functoriality in the Coring -- 8 Functoriality in the Semialgebra -- 9 Closed Model Category Structures -- 10 A Construction of Semialgebras -- 11 Relative Nonhomogeneous Koszul Duality -- Appendix A Contramodules over Coalgebras over Fields -- Appendix B Comparison with Arkhipov's Ext^{\infty/2+*} and Sevostyanov's Tor_{\infty/2+*} -- Appendix C Semialgebras Associated to Harish-Chandra Pairs -- Appendix D Tate Harish-Chandra Pairs and Tate Lie Algebras -- Appendix E Groups with Open Profinite Subgroups -- Appendix F Algebraic Groupoids with Closed Subgroupoids -- Bibliography -- Index En línea: http://dx.doi.org/10.1007/978-3-0346-0436-9 Link: https://biblioteca.cunef.edu/gestion/catalogo/index.php?lvl=notice_display&id=33681 Ejemplares
Signatura Medio Ubicación Sub-localización Sección Estado ningún ejemplar
Título : Sharp Martingale and Semimartingale Inequalities Tipo de documento: documento electrónico Autores: Adam Osekowski ; SpringerLink (Online service) Editorial: Basel : Springer Basel Fecha de publicación: 2012 Otro editor: Imprint: Birkhäuser Colección: Monografie Matematyczne num. 72 Número de páginas: XII, 464 p Il.: online resource ISBN/ISSN/DL: 978-3-0348-0370-0 Idioma : Inglés (eng) Palabras clave: Mathematics Functional analysis Potential theory (Mathematics) Probabilities Probability Theory and Stochastic Processes Analysis Clasificación: 51 Matemáticas Resumen: This monograph presents a unified approach to a certain class of semimartingale inequalities, which can be regarded as probabilistic extensions of classical estimates for conjugate harmonic functions on the unit disc. The approach, which has its roots in the seminal works of Burkholder in the 1980s, makes it possible to deduce a given inequality for semimartingales from the existence of a certain special function with some convex-type properties. Remarkably, an appropriate application of the method leads to the sharp version of the estimate under investigation, which is particularly important for applications. These include the theory of quasiregular mappings (with major implications for the geometric function theory); the boundedness of two-dimensional Hilbert transforms and a more general class of Fourier multipliers; the theory of rank-one convex and quasiconvex functions; and more. The book is divided into a number of distinct parts. In the introductory chapter we present the motivation for the results and relate them to some classical problems in harmonic analysis. The next part contains a general description of the method, which is applied in subsequent chapters to the study of sharp estimates for discrete-time martingales; discrete-time sub- and supermartingales; continuous time processes; and the square and maximal functions. Each chapter contains additional bibliographical notes included for reference purposes Nota de contenido: Preface.- 1. Introduction.- 2. Burkholder’s method.- 3. Martingale inequalities in discrete time.- 4. Sub- and supermartingale inequalities in discrete time.- 5. Inequalities in continuous time.- 6. Inequalities for orthogonal semimartingales.- 7. Maximal inequalities.- 8. Square function inequalities -- Appendix -- Bibliography En línea: http://dx.doi.org/10.1007/978-3-0348-0370-0 Link: https://biblioteca.cunef.edu/gestion/catalogo/index.php?lvl=notice_display&id=32881 Sharp Martingale and Semimartingale Inequalities [documento electrónico] / Adam Osekowski ; SpringerLink (Online service) . - Basel : Springer Basel : Imprint: Birkhäuser, 2012 . - XII, 464 p : online resource. - (Monografie Matematyczne; 72) .
ISBN : 978-3-0348-0370-0
Idioma : Inglés (eng)
Palabras clave: Mathematics Functional analysis Potential theory (Mathematics) Probabilities Probability Theory and Stochastic Processes Analysis Clasificación: 51 Matemáticas Resumen: This monograph presents a unified approach to a certain class of semimartingale inequalities, which can be regarded as probabilistic extensions of classical estimates for conjugate harmonic functions on the unit disc. The approach, which has its roots in the seminal works of Burkholder in the 1980s, makes it possible to deduce a given inequality for semimartingales from the existence of a certain special function with some convex-type properties. Remarkably, an appropriate application of the method leads to the sharp version of the estimate under investigation, which is particularly important for applications. These include the theory of quasiregular mappings (with major implications for the geometric function theory); the boundedness of two-dimensional Hilbert transforms and a more general class of Fourier multipliers; the theory of rank-one convex and quasiconvex functions; and more. The book is divided into a number of distinct parts. In the introductory chapter we present the motivation for the results and relate them to some classical problems in harmonic analysis. The next part contains a general description of the method, which is applied in subsequent chapters to the study of sharp estimates for discrete-time martingales; discrete-time sub- and supermartingales; continuous time processes; and the square and maximal functions. Each chapter contains additional bibliographical notes included for reference purposes Nota de contenido: Preface.- 1. Introduction.- 2. Burkholder’s method.- 3. Martingale inequalities in discrete time.- 4. Sub- and supermartingale inequalities in discrete time.- 5. Inequalities in continuous time.- 6. Inequalities for orthogonal semimartingales.- 7. Maximal inequalities.- 8. Square function inequalities -- Appendix -- Bibliography En línea: http://dx.doi.org/10.1007/978-3-0348-0370-0 Link: https://biblioteca.cunef.edu/gestion/catalogo/index.php?lvl=notice_display&id=32881 Ejemplares
Signatura Medio Ubicación Sub-localización Sección Estado ningún ejemplar
Título : The Structure of the Real Line Tipo de documento: documento electrónico Autores: Lev Bukovský ; SpringerLink (Online service) Editorial: Basel : Springer Basel Fecha de publicación: 2011 Colección: Monografie Matematyczne num. 71 Número de páginas: XIV, 542 p Il.: online resource ISBN/ISSN/DL: 978-3-0348-0006-8 Idioma : Inglés (eng) Palabras clave: Mathematics Mathematical analysis Analysis (Mathematics) Clasificación: 51 Matemáticas Resumen: The rapid development of set theory in the last fifty years, mainly in obtaining plenty of independence results, strongly influenced an understanding of the structure of the real line. This book is devoted to the study of the real line and its subsets taking into account the recent results of set theory. Whenever possible the presentation is done without the full axiom of choice. Since the book is intended to be self-contained, all necessary results of set theory, topology, measure theory, descriptive set theory are revisited with the purpose to eliminate superfluous use of an axiom of choice. The duality of measure and category is studied in a detailed manner. Several statements pertaining to properties of the real line are shown to be undecidable in set theory. The metamathematics behind it is shortly explained in the appendix. Each section contains a series of exercises with additional results Nota de contenido: Preface -- 1 Introduction -- 2 The Real Line -- 3 Topology of Euclidean Spaces -- 4 Measure Theory -- 5 Useful Tools and Technologies -- 6 Descriptive Set Theory -- 7 Decline and Fall of the Duality -- 8 Special Sets of Reals -- 9 Additional Axioms -- 10 Undecidable Statements -- 11 Appendix -- Bibliography -- Index of Notation -- Index En línea: http://dx.doi.org/10.1007/978-3-0348-0006-8 Link: https://biblioteca.cunef.edu/gestion/catalogo/index.php?lvl=notice_display&id=33245 The Structure of the Real Line [documento electrónico] / Lev Bukovský ; SpringerLink (Online service) . - Basel : Springer Basel, 2011 . - XIV, 542 p : online resource. - (Monografie Matematyczne; 71) .
ISBN : 978-3-0348-0006-8
Idioma : Inglés (eng)
Palabras clave: Mathematics Mathematical analysis Analysis (Mathematics) Clasificación: 51 Matemáticas Resumen: The rapid development of set theory in the last fifty years, mainly in obtaining plenty of independence results, strongly influenced an understanding of the structure of the real line. This book is devoted to the study of the real line and its subsets taking into account the recent results of set theory. Whenever possible the presentation is done without the full axiom of choice. Since the book is intended to be self-contained, all necessary results of set theory, topology, measure theory, descriptive set theory are revisited with the purpose to eliminate superfluous use of an axiom of choice. The duality of measure and category is studied in a detailed manner. Several statements pertaining to properties of the real line are shown to be undecidable in set theory. The metamathematics behind it is shortly explained in the appendix. Each section contains a series of exercises with additional results Nota de contenido: Preface -- 1 Introduction -- 2 The Real Line -- 3 Topology of Euclidean Spaces -- 4 Measure Theory -- 5 Useful Tools and Technologies -- 6 Descriptive Set Theory -- 7 Decline and Fall of the Duality -- 8 Special Sets of Reals -- 9 Additional Axioms -- 10 Undecidable Statements -- 11 Appendix -- Bibliography -- Index of Notation -- Index En línea: http://dx.doi.org/10.1007/978-3-0348-0006-8 Link: https://biblioteca.cunef.edu/gestion/catalogo/index.php?lvl=notice_display&id=33245 Ejemplares
Signatura Medio Ubicación Sub-localización Sección Estado ningún ejemplar