Información del autor
Autor Ruzhansky, Michael |
Documentos disponibles escritos por este autor (4)



Evolution Equations of Hyperbolic and Schrödinger Type / SpringerLink (Online service) ; Ruzhansky, Michael ; Sugimoto, Mitsuru ; Wirth, Jens (2012)
![]()
Título : Evolution Equations of Hyperbolic and Schrödinger Type : Asymptotics, Estimates and Nonlinearities Tipo de documento: documento electrónico Autores: SpringerLink (Online service) ; Ruzhansky, Michael ; Sugimoto, Mitsuru ; Wirth, Jens Editorial: Basel : Springer Basel Fecha de publicación: 2012 Otro editor: Imprint: Birkhäuser Colección: Progress in Mathematics, ISSN 0743-1643 num. 301 Número de páginas: VIII, 328 p Il.: online resource ISBN/ISSN/DL: 978-3-0348-0454-7 Idioma : Inglés (eng) Palabras clave: Mathematics Global analysis (Mathematics) Manifolds Operator theory Partial differential equations Calculus of variations Differential Equations Theory Analysis and on Variations Optimal Control; Optimization Clasificación: 51 Matemáticas Resumen: Evolution equations of hyperbolic or more general p-evolution type form an active field of current research. This volume aims to collect some recent advances in the area in order to allow a quick overview of ongoing research. The contributors are first rate mathematicians. This collection of research papers is centred around parametrix constructions and microlocal analysis; asymptotic constructions of solutions; energy and dispersive estimates; and associated spectral transforms. Applications concerning elasticity and general relativity complement the volume. The book gives an overview of a variety of ongoing current research in the field and allows researchers as well as students to grasp new aspects and broaden their understanding of the area En línea: http://dx.doi.org/10.1007/978-3-0348-0454-7 Link: https://biblioteca.cunef.edu/gestion/catalogo/index.php?lvl=notice_display&id=32895 Evolution Equations of Hyperbolic and Schrödinger Type : Asymptotics, Estimates and Nonlinearities [documento electrónico] / SpringerLink (Online service) ; Ruzhansky, Michael ; Sugimoto, Mitsuru ; Wirth, Jens . - Basel : Springer Basel : Imprint: Birkhäuser, 2012 . - VIII, 328 p : online resource. - (Progress in Mathematics, ISSN 0743-1643; 301) .
ISBN : 978-3-0348-0454-7
Idioma : Inglés (eng)
Palabras clave: Mathematics Global analysis (Mathematics) Manifolds Operator theory Partial differential equations Calculus of variations Differential Equations Theory Analysis and on Variations Optimal Control; Optimization Clasificación: 51 Matemáticas Resumen: Evolution equations of hyperbolic or more general p-evolution type form an active field of current research. This volume aims to collect some recent advances in the area in order to allow a quick overview of ongoing research. The contributors are first rate mathematicians. This collection of research papers is centred around parametrix constructions and microlocal analysis; asymptotic constructions of solutions; energy and dispersive estimates; and associated spectral transforms. Applications concerning elasticity and general relativity complement the volume. The book gives an overview of a variety of ongoing current research in the field and allows researchers as well as students to grasp new aspects and broaden their understanding of the area En línea: http://dx.doi.org/10.1007/978-3-0348-0454-7 Link: https://biblioteca.cunef.edu/gestion/catalogo/index.php?lvl=notice_display&id=32895 Ejemplares
Signatura Medio Ubicación Sub-localización Sección Estado ningún ejemplar Modern Aspects of the Theory of Partial Differential Equations / SpringerLink (Online service) ; Ruzhansky, Michael ; Wirth, Jens (2011)
![]()
Título : Modern Aspects of the Theory of Partial Differential Equations Tipo de documento: documento electrónico Autores: SpringerLink (Online service) ; Ruzhansky, Michael ; Wirth, Jens Editorial: Basel : Springer Basel Fecha de publicación: 2011 Colección: Operator Theory: Advances and Applications, ISSN 0255-0156 num. 216 Número de páginas: VIII, 368 p Il.: online resource ISBN/ISSN/DL: 978-3-0348-0069-3 Idioma : Inglés (eng) Palabras clave: Mathematics Mathematical analysis Analysis (Mathematics) Partial differential equations Differential Equations Clasificación: 51 Matemáticas Resumen: The book provides a quick overview of a wide range of active research areas in partial differential equations such as evolution equations and estimates for their solutions, control theory, inverse problems, nonlinear equations, elliptic theory on singular domains, numerical approaches. It will serve as a useful source of information to mathematicians, scientists and engineers. Contributors: Y.P. Apakov G. Avalos L. Bociu L. Boutet de Monvel F. Colombo G. Fragnelli M. Ghergu D. Guidetti U.U. Hrusheuski T.Sh. Kalmenov I.U. Khaydarov S. Khodjiev V. Kokilashvili C. Lebiedzik P. Loreti F. Macià D. Mugnai M. Reissig M.S. Salakhitdinov B.-W. Schulze D. Sforza L. Simon D. Suragan D. Toundykov R. Triggiani A.K. Urinov O.S. Zikirov J.-P. Zolésio En línea: http://dx.doi.org/10.1007/978-3-0348-0069-3 Link: https://biblioteca.cunef.edu/gestion/catalogo/index.php?lvl=notice_display&id=33254 Modern Aspects of the Theory of Partial Differential Equations [documento electrónico] / SpringerLink (Online service) ; Ruzhansky, Michael ; Wirth, Jens . - Basel : Springer Basel, 2011 . - VIII, 368 p : online resource. - (Operator Theory: Advances and Applications, ISSN 0255-0156; 216) .
ISBN : 978-3-0348-0069-3
Idioma : Inglés (eng)
Palabras clave: Mathematics Mathematical analysis Analysis (Mathematics) Partial differential equations Differential Equations Clasificación: 51 Matemáticas Resumen: The book provides a quick overview of a wide range of active research areas in partial differential equations such as evolution equations and estimates for their solutions, control theory, inverse problems, nonlinear equations, elliptic theory on singular domains, numerical approaches. It will serve as a useful source of information to mathematicians, scientists and engineers. Contributors: Y.P. Apakov G. Avalos L. Bociu L. Boutet de Monvel F. Colombo G. Fragnelli M. Ghergu D. Guidetti U.U. Hrusheuski T.Sh. Kalmenov I.U. Khaydarov S. Khodjiev V. Kokilashvili C. Lebiedzik P. Loreti F. Macià D. Mugnai M. Reissig M.S. Salakhitdinov B.-W. Schulze D. Sforza L. Simon D. Suragan D. Toundykov R. Triggiani A.K. Urinov O.S. Zikirov J.-P. Zolésio En línea: http://dx.doi.org/10.1007/978-3-0348-0069-3 Link: https://biblioteca.cunef.edu/gestion/catalogo/index.php?lvl=notice_display&id=33254 Ejemplares
Signatura Medio Ubicación Sub-localización Sección Estado ningún ejemplar Progress in Partial Differential Equations / SpringerLink (Online service) ; Reissig, Michael ; Ruzhansky, Michael (2013)
![]()
Título : Progress in Partial Differential Equations : Asymptotic Profiles, Regularity and Well-Posedness Tipo de documento: documento electrónico Autores: SpringerLink (Online service) ; Reissig, Michael ; Ruzhansky, Michael Editorial: Heidelberg : Springer International Publishing Fecha de publicación: 2013 Otro editor: Imprint: Springer Colección: Springer Proceedings in Mathematics & Statistics, ISSN 2194-1009 num. 44 Número de páginas: VIII, 447 p Il.: online resource ISBN/ISSN/DL: 978-3-319-00125-8 Idioma : Inglés (eng) Palabras clave: Mathematics Dynamics Ergodic theory Differential equations Partial differential Mathematical physics Equations Ordinary Dynamical Systems and Theory Applications in the Physical Sciences Physics Clasificación: 51 Matemáticas Resumen: Progress in Partial Differential Equations is devoted to modern topics in the theory of partial differential equations. It consists of both original articles and survey papers covering a wide scope of research topics in partial differential equations and their applications. The contributors were participants of the 8th ISAAC congress in Moscow in 2011 or are members of the PDE interest group of the ISAAC society. This volume is addressed to graduate students at various levels as well as researchers in partial differential equations and related fields. The reader will find this an excellent resource of both introductory and advanced material. The key topics are: • Linear hyperbolic equations and systems (scattering, symmetrisers) • Non-linear wave models (global existence, decay estimates, blow-up) • Evolution equations (control theory, well-posedness, smoothing) • Elliptic equations (uniqueness, non-uniqueness, positive solutions) • Special models from applications (Kirchhoff equation, Zakharov-Kuznetsov equation, thermoelasticity) Nota de contenido: Preface -- Global Existence and Energy Decay of Solutions for a Nondissipative Wave Equation with a Time-Varying Delay Term -- Non-uniqueness and uniqueness in the Cauchy problem of elliptic and backward-parabolic equations -- On internal regularity of solutions to the initial value problem for the Zakharov–Kuznetsov equation -- Singular semilinear elliptic equations with subquadratic gradient terms -- On the parabolic regime of a hyperbolic equation with weak dissipation: the coercive case -- H¥ well-posedness for degenerate p-evolution models of higher order with time-dependent coefficients -- On the global solvability for semilinear wave equations with smooth time dependent propagation speeds -- Filippov Solutions to Systems of Ordinary Differential Equations with Delta Function Terms as Summands -- Resolvent estimates and scattering problems for Schr¨odinger, Klein-Gordon and wave equations -- On an Optimal Control Problem for the Wave Equation in One Space Dimension Controlled by Third Type Boundary Data -- Critical exponent for the semilinear wave equation with time or space dependent damping -- A note on a class of conservative, well-posed linear control systems -- Recent progress in smoothing estimates for evolution equations -- Differentiability of Inverse Operators -- Quasi-symmetrizer and hyperbolic equations -- Solution of the Cauchy problem for generalized Euler-Poisson-Darboux equation by the method of fractional integrals -- Global Solutions of Semilinear System of Klein-Gordon Equations in de Sitter Spacetime En línea: http://dx.doi.org/10.1007/978-3-319-00125-8 Link: https://biblioteca.cunef.edu/gestion/catalogo/index.php?lvl=notice_display&id=32453 Progress in Partial Differential Equations : Asymptotic Profiles, Regularity and Well-Posedness [documento electrónico] / SpringerLink (Online service) ; Reissig, Michael ; Ruzhansky, Michael . - Heidelberg : Springer International Publishing : Imprint: Springer, 2013 . - VIII, 447 p : online resource. - (Springer Proceedings in Mathematics & Statistics, ISSN 2194-1009; 44) .
ISBN : 978-3-319-00125-8
Idioma : Inglés (eng)
Palabras clave: Mathematics Dynamics Ergodic theory Differential equations Partial differential Mathematical physics Equations Ordinary Dynamical Systems and Theory Applications in the Physical Sciences Physics Clasificación: 51 Matemáticas Resumen: Progress in Partial Differential Equations is devoted to modern topics in the theory of partial differential equations. It consists of both original articles and survey papers covering a wide scope of research topics in partial differential equations and their applications. The contributors were participants of the 8th ISAAC congress in Moscow in 2011 or are members of the PDE interest group of the ISAAC society. This volume is addressed to graduate students at various levels as well as researchers in partial differential equations and related fields. The reader will find this an excellent resource of both introductory and advanced material. The key topics are: • Linear hyperbolic equations and systems (scattering, symmetrisers) • Non-linear wave models (global existence, decay estimates, blow-up) • Evolution equations (control theory, well-posedness, smoothing) • Elliptic equations (uniqueness, non-uniqueness, positive solutions) • Special models from applications (Kirchhoff equation, Zakharov-Kuznetsov equation, thermoelasticity) Nota de contenido: Preface -- Global Existence and Energy Decay of Solutions for a Nondissipative Wave Equation with a Time-Varying Delay Term -- Non-uniqueness and uniqueness in the Cauchy problem of elliptic and backward-parabolic equations -- On internal regularity of solutions to the initial value problem for the Zakharov–Kuznetsov equation -- Singular semilinear elliptic equations with subquadratic gradient terms -- On the parabolic regime of a hyperbolic equation with weak dissipation: the coercive case -- H¥ well-posedness for degenerate p-evolution models of higher order with time-dependent coefficients -- On the global solvability for semilinear wave equations with smooth time dependent propagation speeds -- Filippov Solutions to Systems of Ordinary Differential Equations with Delta Function Terms as Summands -- Resolvent estimates and scattering problems for Schr¨odinger, Klein-Gordon and wave equations -- On an Optimal Control Problem for the Wave Equation in One Space Dimension Controlled by Third Type Boundary Data -- Critical exponent for the semilinear wave equation with time or space dependent damping -- A note on a class of conservative, well-posed linear control systems -- Recent progress in smoothing estimates for evolution equations -- Differentiability of Inverse Operators -- Quasi-symmetrizer and hyperbolic equations -- Solution of the Cauchy problem for generalized Euler-Poisson-Darboux equation by the method of fractional integrals -- Global Solutions of Semilinear System of Klein-Gordon Equations in de Sitter Spacetime En línea: http://dx.doi.org/10.1007/978-3-319-00125-8 Link: https://biblioteca.cunef.edu/gestion/catalogo/index.php?lvl=notice_display&id=32453 Ejemplares
Signatura Medio Ubicación Sub-localización Sección Estado ningún ejemplar
Título : Pseudo-Differential Operators and Symmetries : Background Analysis and Advanced Topics Tipo de documento: documento electrónico Autores: Ruzhansky, Michael ; SpringerLink (Online service) ; Turunen, Ville Editorial: Basel : Birkhäuser Basel Fecha de publicación: 2010 Colección: Pseudo-Differential Operators, Theory and Applications num. 2 Número de páginas: XIV, 710 p Il.: online resource ISBN/ISSN/DL: 978-3-7643-8514-9 Idioma : Inglés (eng) Palabras clave: Mathematics Algebra Topological groups Lie Mathematical analysis Analysis (Mathematics) Global Manifolds Partial differential equations Differential Equations Groups, Groups and on Clasificación: 51 Matemáticas Resumen: This monograph is devoted to the development of the theory of pseudo-di?erential n operators on spaces with symmetries. Such spaces are the Euclidean space R ,the n torus T , compact Lie groups and compact homogeneous spaces. The book consists of several parts. One of our aims has been not only to present new results on pseudo-di?erential operators but also to show parallels between di?erent approaches to pseudo-di?erential operators on di?erent spaces. Moreover, we tried to present the material in a self-contained way to make it accessible for readers approaching the material for the ?rst time. However, di?erent spaces on which we develop the theory of pseudo-di?er- tial operators require di?erent backgrounds. Thus, while operators on the - clidean space in Chapter 2 rely on the well-known Euclidean Fourier analysis, pseudo-di?erentialoperatorsonthetorusandmoregeneralLiegroupsinChapters 4 and 10 require certain backgrounds in discrete analysis and in the representation theory of compact Lie groups, which we therefore present in Chapter 3 and in Part III,respectively. Moreover,anyonewhowishestoworkwithpseudo-di?erential- erators on Lie groups will certainly bene?t from a good grasp of certain aspects of representation theory. That is why we present the main elements of this theory in Part III, thus eliminating the necessity for the reader to consult other sources for most of the time. Similarly, the backgrounds for the theory of pseudo-di?erential 3 operators on S and SU(2) developed in Chapter 12 can be found in Chapter 11 presented in a self-contained way suitable for immediate use Nota de contenido: Foundations of Analysis -- Sets, Topology and Metrics -- Elementary Functional Analysis -- Measure Theory and Integration -- Algebras -- Commutative Symmetries -- Fourier Analysis on ?n -- Pseudo-differential Operators on ?n -- Periodic and Discrete Analysis -- Pseudo-differential Operators on -- Commutator Characterisation of Pseudo-differential Operators -- Representation Theory of Compact Groups -- Groups -- Topological Groups -- Linear Lie Groups -- Hopf Algebras -- Non-commutative Symmetries -- Pseudo-differential Operators on Compact Lie Groups -- Fourier Analysis on SU(2) -- Pseudo-differential Operators on SU(2) -- Pseudo-differential Operators on Homogeneous Spaces En línea: http://dx.doi.org/10.1007/978-3-7643-8514-9 Link: https://biblioteca.cunef.edu/gestion/catalogo/index.php?lvl=notice_display&id=33776 Pseudo-Differential Operators and Symmetries : Background Analysis and Advanced Topics [documento electrónico] / Ruzhansky, Michael ; SpringerLink (Online service) ; Turunen, Ville . - Basel : Birkhäuser Basel, 2010 . - XIV, 710 p : online resource. - (Pseudo-Differential Operators, Theory and Applications; 2) .
ISBN : 978-3-7643-8514-9
Idioma : Inglés (eng)
Palabras clave: Mathematics Algebra Topological groups Lie Mathematical analysis Analysis (Mathematics) Global Manifolds Partial differential equations Differential Equations Groups, Groups and on Clasificación: 51 Matemáticas Resumen: This monograph is devoted to the development of the theory of pseudo-di?erential n operators on spaces with symmetries. Such spaces are the Euclidean space R ,the n torus T , compact Lie groups and compact homogeneous spaces. The book consists of several parts. One of our aims has been not only to present new results on pseudo-di?erential operators but also to show parallels between di?erent approaches to pseudo-di?erential operators on di?erent spaces. Moreover, we tried to present the material in a self-contained way to make it accessible for readers approaching the material for the ?rst time. However, di?erent spaces on which we develop the theory of pseudo-di?er- tial operators require di?erent backgrounds. Thus, while operators on the - clidean space in Chapter 2 rely on the well-known Euclidean Fourier analysis, pseudo-di?erentialoperatorsonthetorusandmoregeneralLiegroupsinChapters 4 and 10 require certain backgrounds in discrete analysis and in the representation theory of compact Lie groups, which we therefore present in Chapter 3 and in Part III,respectively. Moreover,anyonewhowishestoworkwithpseudo-di?erential- erators on Lie groups will certainly bene?t from a good grasp of certain aspects of representation theory. That is why we present the main elements of this theory in Part III, thus eliminating the necessity for the reader to consult other sources for most of the time. Similarly, the backgrounds for the theory of pseudo-di?erential 3 operators on S and SU(2) developed in Chapter 12 can be found in Chapter 11 presented in a self-contained way suitable for immediate use Nota de contenido: Foundations of Analysis -- Sets, Topology and Metrics -- Elementary Functional Analysis -- Measure Theory and Integration -- Algebras -- Commutative Symmetries -- Fourier Analysis on ?n -- Pseudo-differential Operators on ?n -- Periodic and Discrete Analysis -- Pseudo-differential Operators on -- Commutator Characterisation of Pseudo-differential Operators -- Representation Theory of Compact Groups -- Groups -- Topological Groups -- Linear Lie Groups -- Hopf Algebras -- Non-commutative Symmetries -- Pseudo-differential Operators on Compact Lie Groups -- Fourier Analysis on SU(2) -- Pseudo-differential Operators on SU(2) -- Pseudo-differential Operators on Homogeneous Spaces En línea: http://dx.doi.org/10.1007/978-3-7643-8514-9 Link: https://biblioteca.cunef.edu/gestion/catalogo/index.php?lvl=notice_display&id=33776 Ejemplares
Signatura Medio Ubicación Sub-localización Sección Estado ningún ejemplar